Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Reading Level
      Reading Level
      Clear All
      Reading Level
  • Content Type
      Content Type
      Clear All
      Content Type
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Item Type
    • Is Full-Text Available
    • Subject
    • Publisher
    • Source
    • Donor
    • Language
    • Place of Publication
    • Contributors
    • Location
4 result(s) for "Paleobiology Green River Formation."
Sort by:
Borings in early Eocene turtle shell from the Wasatch Formation, South Pass, Wyoming
Borings in fossil turtle shells collected from the lowermost beds of the early Eocene Cathedral Bluffs Tongue of the Wasatch Formation in the northwestern part of the Green River Basin near South Pass, Wyoming, are herein described. Individual turtle shells in the study area are characterized by as few as one or two and as many as >100 borings. The borings include both non-penetrative forms (those which do not pass fully though the shell) as well as penetrative forms (those which pass fully from the exterior to the interior surface of the shell). All non-penetrative forms occur on external surfaces of the carapace and plastron (i.e. those that would have been accessible while the host taxon was alive). Two new ichnogenera and four new ichnospecies are established to describe these borings. Karethraichnus (new ichnogenus) includes three ichnospecies: K. lakkos (new ichnospecies), K. kulindros (new ichnospecies), and K. fiale (new ichnospecies). Karethraichnus lakkos are shallow (non-penetrating), hemispherical pits with rounded, to flattened bases. Karethraichnus kulindros are deep, non-penetrative traces with a cylindrical profile, an axis approximately perpendicular to the substrate surface and with rounded to flattened, hemispherical termini. Karethraichnus fiale are penetrative traces with a cylindrical to bi-convex or flask-shaped profile, and an axis approximately perpendicular to the substrate surface. Thatchtelithichnus (new ichnogenus) Thatchtelithichnus holmani (new ichnospecies) consist of non-penetrative borings into a bone substrate. They consist of a ring-shaped trace, with a central pedestal or platform. The position of the borings on the shells, and evidence of syn-emplacement healing of the borings in several of the turtles, indicates that these borings were emplacement by ectoparasites/mesoparasites while the animals were living. Similar traces in modern emydid turtles are attributed to ticks, leeches, or spirorchid liver flukes.
Morphological and Behavioral Convergence in Extinct and Extant Bugs: The Systematics and Biology of a New Unusual Fossil Lace Bug from the Eocene
The bug Gyaclavator kohlsi Wappler, Guilbert, Wedmann et Labandeira, gen. et sp. nov., represents a new extinct genus of lace bugs (Insecta: Heteroptera: Tingidae) occurring in latest early Eocene deposits of the Green River Formation, from the southern Piceance Basin of Northwestern Colorado, in North America. Gyaclavator can be placed within the Tingidae with certainty, perhaps it is sistergroup to Cantacaderinae. If it belongs to Cantacaderinae, it is the first fossil record of this group for North America. Gyaclavator has unique, conspicuous antennae bearing a specialized, highly dilated distiflagellomere, likely important for intra- or intersex reproductive competition and attraction. This character parallels similar antennae in leaf-footed bugs (Coreidae), and probably is associated with a behavioral convergence as well.
The same picture through different lenses: quantifying the effects of two preservation pathways on Green River Formation insects
Insects in the fossil record are generally preserved in lacustrine shales or in amber. For those in lacustrine shales, preservation is usually via keroginization or mineralization. Given the extended period of microbial decay required to generate ions for mineralization, there is a predicted inherent bias toward lower preservation quality for this pathway by most taphonomic indices compared with keroginization. This study tests this hypothesis by comparing multiple measures of preservation quality between sites with similar sedimentology in the Eocene Green River Formation of Colorado. Here, insects are either mineralized in iron oxides (likely after pyrite) at the Paleoburn site or keroginized at the Anvil Points site. Generally, the prediction that keroginization preserves soft-bodied fossils with higher preservational quality than mineralization is affirmed, but with some caveats. Beetles, known for their robust cuticles, are proportionately more abundant at the Paleoburn site, but eight of the nine orders recorded are shared between sites. As predicted, insects show lower preservation fidelity at the Paleoburn site, but they also show higher degrees of disarticulation. This second bias should be acquired primarily during the biostratinomy stage, and not early diagenesis. Nonetheless, higher-energy biostratinomic conditions may be compatible with taphonomic conditions that promote mineralization over keroginization. Comparing the inherent taphonomic bias of different preservation pathways is often difficult, since fossil deposits may be preserved millions of years or thousands of kilometers apart. By studying two different preservation pathways of insects within the same formation, we can affirm that keroginization does indeed preserve recalcitrant organic matter with higher quality than pyritization or iron-oxide mineralization. Additionally, some guidelines can be proposed concerning the body parts and taxa that can be compared, and for what purpose, when contrasting mineralized and keroginized soft-bodied deposits.