Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Series Title
      Series Title
      Clear All
      Series Title
  • Reading Level
      Reading Level
      Clear All
      Reading Level
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Content Type
    • Item Type
    • Is Full-Text Available
    • Subject
    • Publisher
    • Source
    • Donor
    • Language
    • Place of Publication
    • Contributors
    • Location
1,681 result(s) for "Paleoceanography."
Sort by:
The oceans : a deep history
\"Traces the 4.4 billion-year history of Earth's oceans while also shedding light on the critical role they play in our planet's climate system. Beginning with the formation of primeval Earth and the earliest appearance of oceans, Rohling takes readers on a journey through prehistory to the present age, ... describing the major events in the ocean's evolution--from snowball and greenhouse Earth to the end-Permian mass extinction, the breakup of the Pangaea supercontinent, and the changing climate of today\"--Publisher's website.
Dominant eukaryotic export production during ocean anoxic events reflects the importance of recycled NH 4
The Mesozoic is marked by several widespread occurrences of intense organic matter burial. Sediments from the largest of these events, the Cenomanian–Turonian Oceanic Anoxic Event (OAE 2) are characterized by lower nitrogen isotope ratios than are seen in modern marine settings. It has remained a challenge to describe a nitrogen cycle that could achieve such isotopic depletion. Here we use nitrogen-isotope ratios of porphyrins to show that eukaryotes contributed the quantitative majority of export production throughout OAE 2, whereas cyanobacteria contributed on average approximately 20%. Such data require that any explanation for the OAE nitrogen cycle and its isotopic values be consistent with a eukaryote-dominated ecosystem. Our results agree with models that suggest the OAEs were high-productivity events, supported by vigorous upwelling. Upwelling of anoxic deep waters would have supplied reduced N species (i.e., ) to primary producers. We propose that new production during OAE 2 primarily was driven by direct -assimilation supplemented by diazotrophy, whereas chemocline denitrification and anammox quantitatively consumed and . A marine nitrogen reservoir dominated by , in combination with known kinetic isotope effects, could lead to eukaryotic biomass depleted in 15 N.