Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
114,991 result(s) for "Papillomas"
Sort by:
Human papillomavirus and cervical cancer
Cervical cancer is caused by human papillomavirus infection. Most human papillomavirus infection is harmless and clears spontaneously but persistent infection with high-risk human papillomavirus (especially type 16) can cause cancer of the cervix, vulva, vagina, anus, penis, and oropharynx. The virus exclusively infects epithelium and produces new viral particles only in fully mature epithelial cells. Human papillomavirus disrupts normal cell-cycle control, promoting uncontrolled cell division and the accumulation of genetic damage. Two effective prophylactic vaccines composed of human papillomavirus type 16 and 18, and human papillomavirus type 16, 18, 6, and 11 virus-like particles have been introduced in many developed countries as a primary prevention strategy. Human papillomavirus testing is clinically valuable for secondary prevention in triaging low-grade cytology and as a test of cure after treatment. More sensitive than cytology, primary screening by human papillomavirus testing could enable screening intervals to be extended. If these prevention strategies can be implemented in developing countries, many thousands of lives could be saved.
Development of DNA Vaccine Targeting E6 and E7 Proteins of Human Papillomavirus 16 (HPV16) and HPV18 for Immunotherapy in Combination with Recombinant Vaccinia Boost and PD-1 Antibody
Persistent expression of high-risk human papillomavirus (HPV) E6 and E7 is an obligate driver for several human malignancies, including cervical cancer, wherein HPV16 and HPV18 are the most common types. PD-1 antibody immunotherapy helps a subset of cervical cancer patients, and its efficacy might be improved by combination with active vaccination against E6 and/or E7. Immunotherapy for cervical cancer should target high-risk human papillomavirus types 16 and 18, which cause 50% and 20% of cervical cancers, respectively. Here, we describe the construction and characterization of the pBI-11 DNA vaccine via the addition of codon-optimized human papillomavirus 18 (HPV18) E7 and HPV16 and 18 E6 genes to the HPV16 E7-targeted DNA vaccine pNGVL4a-SigE7(detox)HSP70 (DNA vaccine pBI-1). Codon optimization of the HPV16/18 E6/E7 genes in pBI-11 improved fusion protein expression compared to that in DNA vaccine pBI-10.1 that utilized the native viral sequences fused 3′ to a signal sequence and 5′ to the HSP70 gene of Mycobacterium tuberculosis . Intramuscular vaccination of mice with pBI-11 DNA better induced HPV antigen-specific CD8 + T cell immune responses than pBI-10.1 DNA. Furthermore, intramuscular vaccination with pBI-11 DNA generated stronger therapeutic responses for C57BL/6 mice bearing HPV16 E6/E7-expressing TC-1 tumors. The HPV16/18 antigen-specific T cell-mediated immune responses generated by pBI-11 DNA vaccination were further enhanced by boosting with tissue-antigen HPV vaccine (TA-HPV). Combination of the pBI-11 DNA and TA-HPV boost vaccination with PD-1 antibody blockade significantly improved the control of TC-1 tumors and extended the survival of the mice. Finally, repeat vaccination with clinical-grade pBI-11 with or without clinical-grade TA-HPV was well tolerated in vaccinated mice. These preclinical studies suggest that the pBI-11 DNA vaccine may be used with TA-HPV in a heterologous prime-boost strategy to enhance HPV 16/18 E6/E7-specific CD8 + T cell responses, either alone or in combination with immune checkpoint blockade, to control HPV16/18-associated tumors. Our data serve as an important foundation for future clinical translation. IMPORTANCE Persistent expression of high-risk human papillomavirus (HPV) E6 and E7 is an obligate driver for several human malignancies, including cervical cancer, wherein HPV16 and HPV18 are the most common types. PD-1 antibody immunotherapy helps a subset of cervical cancer patients, and its efficacy might be improved by combination with active vaccination against E6 and/or E7. For patients with HPV16 + cervical intraepithelial neoplasia grade 2/3 (CIN2/3), the precursor of cervical cancer, intramuscular vaccination with a DNA vaccine targeting HPV16 E7 and then a recombinant vaccinia virus expressing HPV16/18 E6-E7 fusion proteins (TA-HPV) was safe, and half of the patients cleared their lesions in a small study (NCT00788164). Here, we sought to improve upon this therapeutic approach by developing a new DNA vaccine that targets E6 and E7 of HPV16 and HPV18 for administration prior to a TA-HPV booster vaccination and for application against cervical cancer in combination with a PD-1-blocking antibody.
Safety, efficacy, and immunogenicity of VGX-3100, a therapeutic synthetic DNA vaccine targeting human papillomavirus 16 and 18 E6 and E7 proteins for cervical intraepithelial neoplasia 2/3: a randomised, double-blind, placebo-controlled phase 2b trial
Despite preventive vaccines for oncogenic human papillomaviruses (HPVs), cervical intraepithelial neoplasia (CIN) is common, and current treatments are ablative and can lead to long-term reproductive morbidity. We assessed whether VGX-3100, synthetic plasmids targeting HPV-16 and HPV-18 E6 and E7 proteins, delivered by electroporation, would cause histopathological regression in women with CIN2/3. Efficacy, safety, and immunogenicity of VGX-3100 were assessed in CIN2/3 associated with HPV-16 and HPV-18, in a randomised, double-blind, placebo-controlled phase 2b study. Patients from 36 academic and private gynaecology practices in seven countries were randomised (3:1) to receive 6 mg VGX-3100 or placebo (1 mL), given intramuscularly at 0, 4, and 12 weeks. Randomisation was stratified by age (<25 vs ≥25 years) and CIN2 versus CIN3 by computer-generated allocation sequence (block size 4). Funder and site personnel, participants, and pathologists were masked to treatment. The primary efficacy endpoint was regression to CIN1 or normal pathology 36 weeks after the first dose. Per-protocol and modified intention-to-treat analyses were based on patients receiving three doses without protocol violations, and on patients receiving at least one dose, respectively. The safety population included all patients who received at least one dose. The trial is registered at ClinicalTrials.gov (number NCT01304524) and EudraCT (number 2012-001334-33). Between Oct 19, 2011, and July 30, 2013, 167 patients received either VGX-3100 (n=125) or placebo (n=42). In the per-protocol analysis 53 (49·5%) of 107 VGX-3100 recipients and 11 (30·6%) of 36 placebo recipients had histopathological regression (percentage point difference 19·0 [95% CI 1·4–36·6]; p=0·034). In the modified intention-to-treat analysis 55 (48·2%) of 114 VGX-3100 recipients and 12 (30·0%) of 40 placebo recipients had histopathological regression (percentage point difference 18·2 [95% CI 1·3–34·4]; p=0·034). Injection-site reactions occurred in most patients, but only erythema was significantly more common in the VGX-3100 group (98/125, 78·4%) than in the placebo group (24/42, 57·1%; percentage point difference 21·3 [95% CI 5·3–37·8]; p=0·007). VGX-3100 is the first therapeutic vaccine to show efficacy against CIN2/3 associated with HPV-16 and HPV-18. VGX-3100 could present a non-surgical therapeutic option for CIN2/3, changing the treatment outlook for this common disease. Inovio Pharmaceuticals.
Bivalent Human Papillomavirus Vaccine Effectiveness in a Japanese Population
Abstract Background Proactive recommendations for human papillomavirus (HPV) vaccines in Japan have been suspended for 5 years because of safety concerns. While no scientific evidence exists to substantiate these concerns, one reason given for not reinstating recommendations is the lack of reliable vaccine effectiveness (VE) data in a Japanese population. This study reports the VE of the bivalent HPV vaccine in Japanese women aged 20–22 years. Methods During cervical screening between 2014 and 2016, women had Papanicolaou smears and HPV tests performed and provided data about their sexual history. Estimates of VE for vaccine-targeted HPV type 16 (HPV16) and 18 and cross-protection against other types were calculated. Results Overall, 2197 women were tested, and 1814 were included in the analysis. Of these, 1355 (74.6%) were vaccinated, and 1295 (95.5%) completed the 3-dose schedule. In women sexually naive at vaccination, the pooled VEs against HPV16 and 18 and for HPV31, 45, and 52 were 95.5% (P < .01) and 71.9% (P < .01), respectively. When adjusted for number of sex partners and birth year, pooled VEs were 93.9% (P = .01) and 67.7% (P = .01) for HPV16 and 18 and HPV31, 45, and 52, respectively. Conclusions The bivalent HPV vaccine is highly effective against HPV16 and 18. Furthermore, significant cross-protection against HPV31, 45, and 52 was demonstrated and sustained up to 6 years after vaccination. These findings should reassure politicians about the VE of bivalent HPV vaccine in a Japanese population. Proactive recommendations for human papillomavirus (HPV) vaccines in Japan have been suspended. In this study, bivalent HPV vaccine is highly effective against HPV types 16 (HPV16) and 18, and significant cross-protection against HPV31, 45, and 52 was demonstrated. These findings should reassure politicians of vaccine effectiveness in a Japanese population.
Oncogenic HPV promotes the expression of the long noncoding RNA lnc-FANCI-2 through E7 and YY1
Long noncoding RNAs (lncRNAs) play diverse roles in biological processes, but their expression profiles and functions in cervical carcinogenesis remain unknown. By RNA-sequencing (RNA-seq) analyses of 18 clinical specimens and selective validation by RT-qPCR analyses of 72 clinical samples, we provide evidence that, relative to normal cervical tissues, 194 lncRNAs are differentially regulated in high-risk (HR)-HPV infection along with cervical lesion progression. One such lncRNA, lnc-FANCI-2, is extensively characterized because it is expressed from a genomic locus adjacent to the FANCI gene encoding an important DNA repair factor. Both genes are up-regulated in HPV lesions and in in vitro model systems of HR-HPV18 infection. We observe a moderate reciprocal regulation of lnc-FANCI-2 and FANCI in cervical cancer CaSki cells. In these cells, lnc-FANCI-2 is transcribed from two alternative promoters, alternatively spliced, and polyadenylated at one of two alternative poly(A) sites. About 10 copies of lnc-FANCI-2 per cell are detected preferentially in the cytoplasm. Mechanistically, HR-HPVs, but not low-risk (LR)-HPV oncogenes induce lnc-FANCI-2 in primary and immortalized human keratinocytes. The induction is mediated primarily by E7, and to a lesser extent by E6, mostly independent of p53/E6AP and pRb/E2F. We show that YY1 interacts with an E7 CR3 core motif and transactivates the promoter of lnc-FANCI-2 by binding to two critical YY1-binding motifs. Moreover, HPV18 increases YY1 expression by reducing miR-29a, which targets the 3′ untranslated region of YY1 mRNA. These data have provided insights into the mechanisms of how HR-HPV infections contribute to cervical carcinogenesis.
Concomitant human papillomavirus (HPV) vaccination and screening for elimination of HPV and cervical cancer
HPV vaccination with concomitant HPV-based screening of young women has been proposed for faster cervical cancer elimination. We describe the baseline results of a population-based trial of this strategy to reduce the incidence of HPV. All 89,547 women born 1994-1999 and resident in the capital region of Sweden were personally invited to concomitant HPV vaccination and HPV screening with 26,125 women (29.2%) enrolled between 2021-05-03 and 2022-12-31. Baseline HPV genotyping of cervical samples from the study participants finds, compared to pre-vaccination prevalences, a strong decline of HPV16 and 18 in birth cohorts previously offered vaccination, some decline for cross-protected HPV types but no decline for HPV types not targeted by vaccines. Our dynamic transmission modelling predicts that the trial could reduce the incidence of high-risk HPV infections among the 1994-1998 cohorts by 62-64% in 3 years. Baseline results are prevalences of HPV infection, validated transmission model projections, and power estimates for evaluating HPV incidence reductions at follow-up (+/−0.1% with 99.9% confidence). In conclusion, concomitant HPV vaccination and HPV screening appears to be a realistic option for faster cervical cancer elimination. Clinicaltrials.gov identifier: NCT04910802; EudraCT number: 2020-001169-34. Here the authors report baseline results of a population-based trial testing concomitant human papillomavirus (HPV) vaccination and HPV-based screening of young women in Sweden and, using a transmission model, suggest that this approach may reduce high-risk HPV infections.
HPV DNA, E6/E7 mRNA, and p16INK4a detection in head and neck cancers: a systematic review and meta-analysis
We aimed to provide updated information about the global estimates of attributable fraction and type distribution of human papillomavirus (HPV) in head and neck squamous cell carcinomas by doing a systematic review and meta-analysis. We did a literature search on PubMed to identify studies that used PCR for detection of HPV DNA in head and neck squamous cell carcinomas with information about HPV genotype distribution. We included studies that tested 20 or more biopsies per cancer site and were published between July 15, 1990, and Feb 29, 2012. We collected information about sex, risk factors, HPV detection methods, and biomarkers of potentially HPV-induced carcinogenesis (E6/E7 mRNA and p16INK4a). If it was not possible to abstract the required information directly from the paper, we contacted the authors. We did a meta-analysis to produce pooled prevalence estimates including a meta-regression to explore sources of heterogeneity. 148 studies were included, contributing data for 12 163 cases of head and neck squamous cell carcinoma from 44 countries. HPV DNA was detected in 3837 cases. HPV16 accounted for 82·2% (95% CI 77·7–86·4) of all HPV DNA positive cases. By cancer site, pooled HPV DNA prevalence estimates were 45·8% (95% CI 38·9–52·9) for oropharynx, 22·1% (16·4–28·3) for larynx (including hypopharynx), and 24·2% (18·7–30·2) for oral cavity. The percent positivity of p16INK4a positive cases in HPV-positive oropharyngeal cancer cases was 86·7% (95% CI 79·2–92·9) and of E6/E7 mRNA positive cases was 86·9% (73·2–96·8). The estimate of HPV attributable fraction in oropharyngeal cancer defined by expression of positive cases of E6/E7 mRNA was 39·8% and of p16INK4a was 39·7%. Of subsites, tonsils (53·9%, 95% CI 46·4–61·3) had the highest HPV DNA prevalence. HPV DNA prevalence varied significantly by anatomical site, geographic region, but not by sex or tobacco or alcohol consumption. The contribution of HPV prevalence in head and neck squamous cell carcinoma and in particular that of HPV16 in the oropharynx shows the potential benefit of prophylactic vaccines. European Commission.
Vaccine efficacy against persistent human papillomavirus (HPV) 16/18 infection at 10 years after one, two, and three doses of quadrivalent HPV vaccine in girls in India: a multicentre, prospective, cohort study
A randomised trial designed to compare three and two doses of quadrivalent human papillomavirus (HPV) vaccine in adolescent girls in India was converted to a cohort study after suspension of HPV vaccination in trials by the Indian Government. In this Article, the revised aim of the cohort study was to compare vaccine efficacy of single dose to that of three and two doses in protecting against persistent HPV 16 and 18 infection at 10 years post vaccination. In the randomised trial, unmarried girls aged 10–18 years were recruited from nine centres across India and randomly assigned to either two doses or three doses of the quadrivalent HPV vaccine (Gardasil [Merck Sharp & Dohme, Whitehouse Station, NJ, USA]; 0·5 mL administered intramuscularly). After suspension of recruitment and vaccination, the study became a longitudinal, prospective cohort study by default, and participants were allocated to four cohorts on the basis of the number vaccine doses received per protocol: the two-dose cohort (received vaccine on days 1 and 180 or later), three-dose cohort (days 1, 60, and 180 or later), two-dose default cohort (days 1 and 60 or later), and the single-dose default cohort. Participants were followed up yearly. Cervical specimens were collected from participants 18 months after marriage or 6 months after first childbirth, whichever was earlier, to assess incident and persistent HPV infections. Married participants were screened for cervical cancer as they reached 25 years of age. Unvaccinated women age-matched to the married vaccinated participants were recruited to serve as controls. Vaccine efficacy against persistent HPV 16 and 18 infections (the primary endpoint) was analysed for single-dose recipients and compared with that in two-dose and three-dose recipients after adjusting for imbalance in the distribution of potential confounders between the unvaccinated and vaccinated cohorts. This trial is registered with ISRCTN, ISRCTN98283094, and ClinicalTrials.gov, NCT00923702. Vaccinated participants were recruited between Sept 1, 2009, and April 8, 2010 (date of vaccination suspension), and followed up over a median duration of 9·0 years (IQR 8·2–9·6). 4348 participants had three doses, 4980 had two doses (0 and 6 months), and 4949 had a single dose. Vaccine efficacy against persistent HPV 16 and 18 infection among participants evaluable for the endpoint was 95·4% (95% CI 85·0–99·9) in the single-dose default cohort (2135 women assessed), 93·1% (77·3–99·8) in the two-dose cohort (1452 women assessed), and 93·3% (77·5–99·7) in three-dose recipients (1460 women assessed). A single dose of HPV vaccine provides similar protection against persistent infection from HPV 16 and 18, the genotypes responsible for nearly 70% of cervical cancers, to that provided by two or three doses. Bill & Melinda Gates Foundation.
Molecular and Histological Identification of Bovine Papillomavirus 1, 2 and a Novel Genotype in Cutaneous Papillomas of Dairy Cattle in Taiwan
Bovine papillomaviruses (BPVs) are host‐specific and strongly epitheliotropic infectious agents that cause benign epithelial and mucosal proliferations, with potential for malignant transformation. However, BPV1, BPV2, and BPV5 are unique in their ability to infect both epithelial and connective tissues. While BPV infections had been documented globally, there was no disease information reported from Taiwan. To investigate whether BPVs are associated with the development of cutaneous papillomas in dairy cattle in Taiwan, in the present study, eight cutaneous papilloma samples from six dairy farms were collected and analyzed by using histopathology, immunohistochemical (IHC) staining, and molecular biology methods. BPV1 and BPV2 were identified, along with a novel BPV sharing 80.9% sequence identity with BPV38. This novel BPV, classified under Xipapillomavirus , was detected in both epithelial and mesenchymal cells through in situ hybridization (ISH), suggesting a broader tissue tropism than typical Xipapillomavirus infections. These findings provide new insights into BPV diversity and pathogenesis.
Human papillomavirus as a driver of head and neck cancers
The human papillomavirus (HPV) family includes more than 170 different types of virus that infect stratified epithelium. High-risk HPV is well established as the primary cause of cervical cancer, but in recent years, a clear role for this virus in other malignancies is also emerging. Indeed, HPV plays a pathogenic role in a subset of head and neck cancers—mostly cancers of the oropharynx—with distinct epidemiological, clinical and molecular characteristics compared with head and neck cancers not caused by HPV. This review summarises our current understanding of HPV in these cancers, specifically detailing HPV infection in head and neck cancers within different racial/ethnic subpopulations, and the differences in various aspects of these diseases between women and men. Finally, we provide an outlook for this disease, in terms of clinical management, and consider the issues of ‘diagnostic biomarkers’ and targeted therapies.