Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
58
result(s) for
"Parafascicular nucleus"
Sort by:
Activation of the thalamic parafascicular nucleus by electrical stimulation of the peripheral vestibular nerve in rats
by
Kim, Nari
,
Park, Byung Rim
,
Han, Sang Who
in
Action Potentials - physiology
,
Afferent Pathways - physiology
,
Analysis of Variance
2017
The parafascicular nucleus (PFN) of the thalamus is a primary structure in the feedback circuit of the basal ganglia-thalamo-cortical system, as well as in the neural circuit of the vestibulo-thalamo-striatal pathway. We investigated the characteristics of the functional connectivity between the peripheral vestibular system and the PFN in rats. A single electrical stimulation was applied to the horizontal semicircular canal nerve in the peripheral vestibular end-organs. This resulted in polysynaptic local field potentials (LFPs) in the PFN, which were composed of long-lasting multiple waves. The LFPs were prominently seen contralateral to the stimulation site. The PFN LFPs were suppressed by transient chemical de-afferentation of peripheral vestibular activity using a 5% lidocaine injection into the middle ear. The spontaneous firing rate of the single units increased after electrical stimulation to the horizontal canal nerve in a frequency-dependent manner. The induction of cFos protein was more prominent in the contralateral PFN than in the ipsilateral PFN following horizontal semicircular canal nerve stimulation. The functional vestibulo-parafascicular connection is a neural substrate for the transmission of vestibular sensory information to the basal ganglia.
Journal Article
Parafascicular Thalamic and Orbitofrontal Cortical Inputs to Striatum Represent States for Goal-Directed Action Selection
by
Stayte, Sandy
,
Dhungana, Amolika
,
Vissel, Bryce
in
Animals
,
Behavioral Neuroscience
,
Brain-derived neurotrophic factor
2021
Several lines of evidence accrued over the last 5–10 years have converged to suggest that the parafascicular nucleus of the thalamus and the lateral orbitofrontal cortex each represent or contribute to internal state/context representations that guide action selection in partially observable task situations. In rodents, inactivations of each structure have been found to selectively impair performance in paradigms testing goal-directed action selection, but only when that action selection relies on state representations. Electrophysiological evidence has suggested that each structure achieves this function via inputs onto cholinergic interneurons (CINs) in the dorsomedial striatum. Here, we briefly review these studies, then point to anatomical evidence regarding the afferents of each structure and what they suggest about the specific features that each contribute to internal state representations. Finally, we speculate as to whether this role might be achieved interdependently through direct PF→OFC projections, or through the convergence of independent direct orbitofrontal cortex (OFC) and parafascicular nucleus of the thalamus (PF) inputs onto striatal targets.
Journal Article
Functional Interactions Between the Parafascicular Thalamic Nucleus and Motor Cortex Are Altered in Hemiparkinsonian Rat
2022
Parkinson’s disease (PD) is characterized by aberrant discharge patterns and exaggerated oscillatory activity within basal ganglia-thalamocortical circuits. We have previously observed substantial alterations in the spike and local field potential (LFP) activities recorded in the thalamic parafascicular nucleus (PF) and motor cortex (M1), respectively, of hemiparkinsonian rats during rest or catching movement. The current study explored whether the mutual effects of the PF and M1 depended on the amplitude and phase relation within their identified neuron spikes or group rhythmic activities. Microwire electrode arrays were paired and implanted in the PF and M1 of rats with unilateral dopaminergic cell lesions. The results showed that identified PF neurons exhibited aberrant cell type-selective firing rates and preferentially and excessively phase-locked firing to cortical LFP oscillations mainly at 12-35 Hz (beta frequencies), consistent with the observation of identified M1 neurons with ongoing PF LFP oscillations. Experimental evidence also showed a decrease in phase locking at 0.7-12 Hz and 35-70 Hz within the PF and M1 circuit in hemiparkinsonian rats. Furthermore, anatomical evidence was provided for the existence of afferent and efferent bidirectional reciprocal connectivity pathways between the PF and M1 using an anterograde and retrograde neuroanatomical tracing virus. Collectively, our results suggested that multiple alterations may be present in regional anatomical and functional modes by which the PF and M1 interact with and that parkinsonism-associated changes in PF integrate M1 activity in a manner that varies with the frequency, behavioral state, and the integrity of the dopaminergic system.
Journal Article
The mouse cortico–basal ganglia–thalamic network
2021
The cortico–basal ganglia–thalamo–cortical loop is one of the fundamental network motifs in the brain. Revealing its structural and functional organization is critical to understanding cognition, sensorimotor behaviour, and the natural history of many neurological and neuropsychiatric disorders. Classically, this network is conceptualized to contain three information channels: motor, limbic and associative
1
–
4
. Yet this three-channel view cannot explain the myriad functions of the basal ganglia. We previously subdivided the dorsal striatum into 29 functional domains on the basis of the topography of inputs from the entire cortex
5
. Here we map the multi-synaptic output pathways of these striatal domains through the globus pallidus external part (GPe), substantia nigra reticular part (SNr), thalamic nuclei and cortex. Accordingly, we identify 14 SNr and 36 GPe domains and a direct cortico-SNr projection. The striatonigral direct pathway displays a greater convergence of striatal inputs than the more parallel striatopallidal indirect pathway, although direct and indirect pathways originating from the same striatal domain ultimately converge onto the same postsynaptic SNr neurons. Following the SNr outputs, we delineate six domains in the parafascicular and ventromedial thalamic nuclei. Subsequently, we identify six parallel cortico–basal ganglia–thalamic subnetworks that sequentially transduce specific subsets of cortical information through every elemental node of the cortico–basal ganglia–thalamic loop. Thalamic domains relay this output back to the originating corticostriatal neurons of each subnetwork in a bona fide closed loop.
Mesoscale connectomic mapping of the cortico–basal ganglia–thalamic network reveals key architectural and information processing features.
Journal Article
Targeting thalamic circuits rescues motor and mood deficits in PD mice
2022
Although bradykinesia, tremor and rigidity are the hallmark motor defects in patients with Parkinson’s disease (PD), patients also experience motor learning impairments and non-motor symptoms such as depression
1
. The neural circuit basis for these different symptoms of PD are not well understood. Although current treatments are effective for locomotion deficits in PD
2
,
3
, therapeutic strategies targeting motor learning deficits and non-motor symptoms are lacking
4
–
6
. Here we found that distinct parafascicular (PF) thalamic subpopulations project to caudate putamen (CPu), subthalamic nucleus (STN) and nucleus accumbens (NAc). Whereas PF→CPu and PF→STN circuits are critical for locomotion and motor learning, respectively, inhibition of the PF→NAc circuit induced a depression-like state. Whereas chemogenetically manipulating CPu-projecting PF neurons led to a long-term restoration of locomotion, optogenetic long-term potentiation (LTP) at PF→STN synapses restored motor learning behaviour in an acute mouse model of PD. Furthermore, activation of NAc-projecting PF neurons rescued depression-like phenotypes. Further, we identified nicotinic acetylcholine receptors capable of modulating PF circuits to rescue different PD phenotypes. Thus, targeting PF thalamic circuits may be an effective strategy for treating motor and non-motor deficits in PD.
Journal Article
Distinct thalamocortical circuits underlie allodynia induced by tissue injury and by depression-like states
2021
In humans, tissue injury and depression can both cause pain hypersensitivity, but whether this involves distinct circuits remains unknown. Here, we identify two discrete glutamatergic neuronal circuits in male mice: a projection from the posterior thalamic nucleus (PO
Glu
) to primary somatosensory cortex glutamatergic neurons (S1
Glu
) mediates allodynia from tissue injury, whereas a pathway from the parafascicular thalamic nucleus (PF
Glu
) to anterior cingulate cortex GABA-containing neurons to glutamatergic neurons (ACC
GABA→Glu
) mediates allodynia associated with a depression-like state. In vivo calcium imaging and multi-tetrode electrophysiological recordings reveal that PO
Glu
and PF
Glu
populations undergo different adaptations in the two conditions. Artificial manipulation of each circuit affects allodynia resulting from either tissue injury or depression-like states, but not both. Our study demonstrates that the distinct thalamocortical circuits PO
Glu
→S1
Glu
and PF
Glu
→ACC
GABA→Glu
subserve allodynia associated with tissue injury and depression-like states, respectively, thus providing insights into the circuit basis of pathological pain resulting from different etiologies.
Pain hypersensitivity can result from tissue injury and from depression. This study in mice shows that distinct thalamocortical pathways mediate allodynia associated with injury and a stress-induced depression-like state, respectively.
Journal Article
The structural connectivity mapping of the intralaminar thalamic nuclei
by
Grodd, Wolfgang
,
Kumar, Vinod Jangir
,
Scheffler, Klaus
in
631/378/3920
,
692/698/1688/64
,
Arousal
2023
The intralaminar nuclei of the thalamus play a pivotal role in awareness, conscious experience, arousal, sleep, vigilance, as well as in cognitive, sensory, and sexual processing. Nonetheless, in humans, little is known about the direct involvement of these nuclei in such multifaceted functions and their structural connections in the brain. Thus, examining the versatility of structural connectivity of the intralaminar nuclei with the rest of the brain seems reasonable. Herein, we attempt to show the direct structural connectivity of the intralaminar nuclei to diencephalic, mesencephalic, and cortical areas using probabilistic tracking of the diffusion data from the human connectome project. The intralaminar nuclei fiber distributions span a wide range of subcortical and cortical areas. Moreover, the central medial and parafascicular nucleus reveal similar connectivity to the temporal, visual, and frontal cortices with only slight variability. The central lateral nucleus displays a refined projection to the superior colliculus and fornix. The centromedian nucleus seems to be an essential component of the subcortical somatosensory system, as it mainly displays connectivity via the medial and superior cerebellar peduncle to the brainstem and the cerebellar lobules. The subparafascicular nucleus projects to the somatosensory processing areas. It is interesting to note that all intralaminar nuclei have connections to the brainstem. In brief, the structural connectivity of the intralaminar nuclei aligns with the structural core of various functional demands for arousal, emotion, cognition, sensory, vision, and motor processing. This study sheds light on our understanding of the structural connectivity of the intralaminar nuclei with cortical and subcortical structures, which is of great interest to a broader audience in clinical and neuroscience research.
Journal Article
A disinhibitory nigra-parafascicular pathway amplifies seizure in temporal lobe epilepsy
2020
The precise circuit of the substantia nigra pars reticulata (SNr) involved in temporal lobe epilepsy (TLE) is still unclear. Here we found that optogenetic or chemogenetic activation of SNr parvalbumin
+
(PV) GABAergic neurons amplifies seizure activities in kindling- and kainic acid-induced TLE models, whereas selective inhibition of these neurons alleviates seizure activities. The severity of seizures is bidirectionally regulated by optogenetic manipulation of SNr PV fibers projecting to the parafascicular nucleus (PF). Electrophysiology combined with rabies virus-assisted circuit mapping shows that SNr PV neurons directly project to and functionally inhibit posterior PF GABAergic neurons. Activity of these neurons also regulates seizure activity. Collectively, our results reveal that a long-range SNr-PF disinhibitory circuit participates in regulating seizure in TLE and inactivation of this circuit can alleviate severity of epileptic seizures. These findings provide a better understanding of pathological changes from a circuit perspective and suggest a possibility to precisely control epilepsy.
The neural circuits through which the substantia nigra pars reticulata (SNr) exerts its role in epilepsy control are not known. Here the authors reveal that a long-range SNr-parafascicular nucleus disinhibitory circuit participates in regulating seizures in temporal lobe epilepsy and inhibition of this circuit can alleviate severity of epileptic seizures.
Journal Article
Divergent pallidal pathways underlying distinct Parkinsonian behavioral deficits
2021
The basal ganglia regulate a wide range of behaviors, including motor control and cognitive functions, and are profoundly affected in Parkinson’s disease (PD). However, the functional organization of different basal ganglia nuclei has not been fully elucidated at the circuit level. In this study, we investigated the functional roles of distinct parvalbumin-expressing neuronal populations in the external globus pallidus (GPe-PV) and their contributions to different PD-related behaviors. We demonstrate that substantia nigra pars reticulata (SNr)-projecting GPe-PV neurons and parafascicular thalamus (PF)-projecting GPe-PV neurons are associated with locomotion and reversal learning, respectively. In a mouse model of PD, we found that selective manipulation of the SNr-projecting GPe-PV neurons alleviated locomotor deficit, whereas manipulation of the PF-projecting GPe-PV neurons rescued the impaired reversal learning. Our findings establish the behavioral importance of two distinct GPe-PV neuronal populations and, thereby, provide a new framework for understanding the circuit basis of different behavioral deficits in the Parkinsonian state.
The authors define two functionally distinct external globus pallidus basal ganglia pathways and their differential contributions to motor and cognitive Parkinsonian deficits in mice.
Journal Article
Deep brain stimulation in disorders of consciousness: 10 years of a single center experience
by
Marčinković, Petar
,
Raguž, Marina
,
Paradžik, Veronika
in
692/617/375/1399
,
692/617/375/3183
,
Brain stem
2023
Disorders of consciousness (DoC), namely unresponsive wakefulness syndrome (UWS) and minimally conscious state (MCS), represent severe conditions with significant consequences for patients and their families. Several studies have reported the regaining of consciousness in such patients using deep brain stimulation (DBS) of subcortical structures or brainstem nuclei. Our study aims to present the 10 years’ experience of a single center using DBS as a therapy on a cohort of patients with DoC. Eighty Three consecutive patients were evaluated between 2011 and 2022; entry criteria consisted of neurophysiological and neurological evaluations and neuroimaging examinations. Out of 83, 36 patients were considered candidates for DBS implantation, and 32 patients were implanted: 27 patients had UWS, and five had MCS. The stimulation target was the centromedian-parafascicular complex in the left hemisphere in hypoxic brain lesion or the one better preserved in patients with traumatic brain injury. The level of consciousness was improved in seven patients. Three out of five MCS patients emerged to full awareness, with the ability to interact and communicate. Two of them can live largely independently. Four out of 27 UWS patients showed consciousness improvement with two patients emerging to full awareness, and the other two reaching MCS. In patients with DoC lasting longer than 12 months following traumatic brain injury or 6 months following anoxic-ischemic brain lesion, spontaneous recovery is rare. Thus, DBS of certain thalamic nuclei could be recommended as a treatment option for patients who meet neurological, neurophysiological and neuroimaging criteria, especially in earlier phases, before occurrence of irreversible musculoskeletal changes. Furthermore, we emphasize the importance of cooperation between centers worldwide in studies on the potentials of DBS in treating patients with DoC.
Journal Article