Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
1,907 result(s) for "Parasite Egg Count"
Sort by:
Diagnosis of soil-transmitted helminths using the Kato-Katz technique: What is the influence of stirring, storage time and storage temperature on stool sample egg counts?
Soil-transmitted helminths infect about one fifth of the world's population and have a negative impact on health. The Kato-Katz technique is the recommended method to detect soil-transmitted helminth eggs in stool samples, particularly in programmatic settings. However, some questions in its procedure remain. Our study aimed to investigate the effect of storage time, storage temperature and stirring of stool samples on fecal egg counts (FECs). In the framework of a clinical trial on Pemba Island, United Republic of Tanzania, 488 stool samples were collected from schoolchildren. These samples were evaluated in three experiments. In the first experiment (n = 92), two Kato-Katz slides were prepared from the same stool sample, one was stored at room temperature, the other in a refrigerator for 50 hours, and each slide was analyzed at nine time points (20, 50, 80, 110, 140 minutes, 18, 26, 42 and 50 hours). In the second experiment (n = 340), whole stool samples were split into two, one part was stored at room temperature, and the other part was put in a refrigerator for 48 hours. From each part one Kato-Katz slide was prepared and analyzed at three time points over two days (0, 24 and 48 hours). In the third experiment (n = 56), whole stool samples where stirred for 15 seconds six times and at each time point a Kato-Katz slide was prepared and analyzed. Mean hookworm FECs of Kato-Katz slides stored at room temperature steadily decreased following slide preparation. After two hours, mean hookworm FECs decreased from 22 to 16, whereas no reduction was observed if Kato-Katz slides were stored in the refrigerator (19 vs 21). The time x storage interaction effect was statistically significant (coefficient 0.26, 95% CI: 0.17 to 0.35, p < 0.0001). After 24 hours mean hookworm FECs dropped close to zero, irrespective of the storage condition. Whole stool samples stored at room temperature for one day resulted in a mean hookworm FEC decrease of 23% (p < 0.0001), compared to a 13% reduction (p < 0.0001) if samples were stored in the refrigerator. Fecal egg counts of A. lumbricoides and T. trichiura remained stable over time regardless of storage temperature of whole stool samples. Finally, we found a significant reduction of the variation of hookworm and T. trichiura eggs with increasing rounds of stirring the sample, but not for A. lumbricoides. For hookworm we observed a simultaneous decrease in mean FECs, making it difficult to draw recommendations on stirring samples. Our findings suggest that stool samples (i) should be analyzed on the day of collection and (ii) should be analyzed between 20-30 minutes after slide preparation; if that is not possible, Kato-Katz slides can be stored in a refrigerator for a maximum of 110 minutes.
Quality control in the diagnosis of Trichuris trichiura and Ascaris lumbricoides using the Kato-Katz technique: experience from three randomised controlled trials
Background An accurate diagnosis of soil-transmitted helminthiasis is important for individual patient management, for drug efficacy evaluation and for monitoring control programmes. The Kato-Katz technique is the most widely used method detecting soil-transmitted helminth eggs in faecal samples. However, detailed analyses of quality control, including false-positive and faecal egg count (FEC) estimates, have received little attention. Methods Over a 3-year period, within the frame of a series of randomised controlled trials conducted in Pemba, United Republic of Tanzania, 10% of randomly selected Kato-Katz thick smears were re-read for Trichuris trichiura and Ascaris lumbricoides eggs. In case of discordant result (i.e. positive versus negative) the slides were re-examined a third time. A result was assumed to be false-positive or false-negative if the result from the initial reading did not agree with the quality control as well as the third reading. We also evaluated the general agreement in FECs between the first and second reading, according to internal and World Health Organization (WHO) guidelines. Results From the 1,445 Kato-Katz thick smears subjected to quality control, 1,181 (81.7%) were positive for T. trichiura and 290 (20.1%) were positive for A. lumbricoides . During quality control, very low rates of false-positive results were observed; 0.35% (n = 5) for T. trichiura and 0.28% (n = 4) for A. lumbricoides . False-negative readings of Kato-Katz thick smears were obtained in 28 (1.94%) and 6 (0.42%) instances for T. trichiura and A. lumbricoides , respectively. A high frequency of discordant results in FECs was observed (i.e. 10.0-23.9% for T. trichiura , and 9.0-11.4% for A. lumbricoides ). Conclusions Our analyses show that the rate of false-positive diagnoses of soil-transmitted helminths is low. As the probability of false-positive results increases after examination of multiple stool samples from a single individual, the potential influence of false-positive results on epidemiological studies and anthelminthic drug efficacy studies should be determined. Existing WHO guidelines for quality control might be overambitious and might have to be revised, specifically with regard to handling disagreements in FECs.
Performance of the Kato-Katz method and real time polymerase chain reaction for the diagnosis of soil-transmitted helminthiasis in the framework of a randomised controlled trial: treatment efficacy and day-to-day variation
Background Accurate, scalable and sensitive diagnostic tools are crucial in determining prevalence of soil-transmitted helminths (STH), assessing infection intensities and monitoring treatment efficacy. However, assessments on treatment efficacy comparing traditional microscopic to newly emerging molecular approaches such as quantitative Polymerase Chain Reaction (qPCR) are scarce and hampered partly by lack of an established diagnostic gold standard. Methods We compared the performance of the copromicroscopic Kato-Katz method to qPCR in the framework of a randomized controlled trial on Pemba Island, Tanzania, evaluating treatment efficacy based on cure rates of albendazole monotherapy versus ivermectin-albendazole against Trichuris trichiura and concomitant STH infections. Day-to-day variability of both diagnostic methods was assessed to elucidate reproducibility of test results by analysing two stool samples before and two stool samples after treatment of 160 T. trichiura Kato-Katz positive participants, partially co-infected with Ascaris lumbricoides and hookworm, per treatment arm ( n  = 320). As negative controls, two faecal samples of 180 Kato-Katz helminth negative participants were analysed. Results Fair to moderate correlation between microscopic egg count and DNA copy number for the different STH species was observed at baseline and follow-up. Results indicated higher sensitivity of qPCR for all three STH species across all time points; however, we found lower test result reproducibility compared to Kato-Katz. When assessed with two samples from consecutive days by qPCR, cure rates were significantly lower for T. trichiura (23.2 vs 46.8%), A. lumbricoides (75.3 vs 100%) and hookworm (52.4 vs 78.3%) in the ivermectin-albendazole treatment arm, when compared to Kato-Katz. Conclusions qPCR diagnosis showed lower reproducibility of test results compared to Kato-Katz, hence multiple samples per participant should be analysed to achieve a reliable diagnosis of STH infection. Our study confirms that cure rates are overestimated using Kato-Katz alone. Our findings emphasize that standardized and accurate molecular diagnostic tools are urgently needed for future monitoring within STH control and/or elimination programmes.
Performance of real-time polymerase chain reaction and Kato-Katz for diagnosing soil-transmitted helminth infections and evaluating treatment efficacy of emodepside in randomized controlled trials
The World Health Organization recommends the use of the microscopy-based Kato-Katz thick smear for diagnosing soil-transmitted helminth (STH) infections. Despite its simplicity and cost-effectiveness, the Kato-Katz method faces challenges, including reader subjectivity and reduced sensitivity. Real-time polymerase chain reaction (qPCR) technology offers standardized readouts and higher sensitivity, making it suitable for STH diagnosis and monitoring the treatment efficacy of emodepside within the framework of randomized controlled trials. We evaluated the performance of Kato-Katz versus qPCR for assessing treatment efficacy in terms of cure rates, of single doses of 5, 10, 15, 20, 25 and 30 mg of emodepside compared to 400 mg albendazole. Spearman's rank correlation coefficient examined the correlation between STH eggs per gram in stool samples and qPCR Ct values. Diagnostic sensitivity of qPCR was calculated using a Bayesian latent class modelling approach with data from Ascaris lumbricoides infections. Agreement between Kato-Katz and qPCR at baseline was 93.57% for Trichuris trichiura, and 73.49% for both hookworm and A. lumbricoides. For the latter helminth qPCR demonstrated higher sensitivity (85.00% vs. 47.70%) and slightly lower specificity (93.40% vs. 99.40%) compared to Kato-Katz. We observed a fair to moderate agreement with negative correlation between Ct values and Kato-Katz egg counts. Treatment efficacy, as assessed by qPCR, was lower for all doses of emodepside and albendazole compared to Kato-Katz. Nonetheless, emodepside demonstrated higher cure rates against T. trichiura and A. lumbricoides infections compared to albendazole. Our study confirmed that qPCR is a sensitive diagnostic method for diagnosing STH infections compared to Kato-Katz and serves as a valuable tool for determining treatment efficacy in clinical trials. Furthermore, qPCR confirmed the better treatment efficacy of emodepside compared to albendazole, despite indicating lower cure rates than Kato-Katz.
Evaluation of Parasight All-in-One system for the automated enumeration of helminth ova in canine and feline feces
Background  Digital imaging combined with deep-learning-based computational image analysis is a growing area in medical diagnostics, including parasitology, where a number of automated analytical devices have been developed and are available for use in clinical practice. Methods The performance of Parasight All-in-One (AIO), a second-generation device, was evaluated by comparing it to a well-accepted research method (mini-FLOTAC) and to another commercially available test (Imagyst). Fifty-nine canine and feline infected fecal specimens were quantitatively analyzed by all three methods. Since some samples were positive for more than one parasite, the dataset consisted of 48 specimens positive for Ancylostoma spp., 13 for Toxocara spp. and 23 for Trichuris spp. Results The magnitude of Parasight AIO counts correlated well with those of mini-FLOTAC but not with those of Imagyst. Parasight AIO counted approximately 3.5-fold more ova of Ancylostoma spp. and Trichuris spp. and 4.6-fold more ova of Toxocara spp. than the mini-FLOTAC, and counted 27.9-, 17.1- and 10.2-fold more of these same ova than Imagyst, respectively. These differences translated into differences between the test sensitivities at low egg count levels (< 50 eggs/g), with Parasight AIO > mini-FLOTAC > Imagyst. At higher egg counts Parasight AIO and mini-FLOTAC performed with comparable precision (which was significantly higher that than Imagyst), whereas at lower counts (> 30 eggs/g) Parasight was more precise than both mini-FLOTAC and Imagyst, while the latter two methods did not significantly differ from each other. Conclusions In general, Parasight AIO analyses were both more precise and sensitive than mini-FLOTAC and Imagyst and quantitatively correlated well with mini-FLOTAC. While Parasight AIO produced lower raw counts in eggs-per-gram than mini-FLOTAC, these could be corrected using the data generated from these correlations. Graphical Abstract
Evaluation of the detection method by a flotation method using a wire loop for gastrointestinal parasites
Infections by gastrointestinal parasites are found in a variety of animals worldwide. For the diagnosis of such infections, the flotation method is commonly used to detect parasitic microorganisms, such as oocysts or eggs, in feces. Instead of adding a flotation solution after the final centrifugation step and using a cover slip to collect the parasites, the method using a wire loop for the recovery of the organisms has been reported as one of alternative methods. However, the recovery rates of microorganisms from the flotation method have not been analysed. In the present study, the utility of a flotation method with the use of a wire loop of 8 mm in diameter (the loop method) was evaluated using different numbers of E. tenella oocysts and Heterakis gallinarum eggs, and chicken fecal samples collected at the farms. Consequently, we found that the oocysts and eggs in tubes could be collected at a ratio of 2.00 to 3.08. Thus, our results indicate that the loop method is a simple and time saving method, implicating the application for the estimated OPG/ EPG (Oocysts/Eggs per gram) of the samples. Graphical ► Utility of a flotation method with the use of a wire loop of 8 mm in diameter was evaluated. ► E. tenella oocysts and Heterakis gallinarum eggs in tubes could be collected at a ratio of 2.00 to 3.08. ► Our results may implicate the application for the estimated OPG/ EPG of the samples as a simple and time saving method.
Diagnostic comparison between FECPAKG2 and the Kato-Katz method for analyzing soil-transmitted helminth eggs in stool
Over one billion people are infected with soil-transmitted helminths (STH), i.e. Ascaris lumbricoides, hookworm and Trichuris trichiura. For estimating drug efficacy and monitoring anthelminthic drug resistance, accurate diagnostic methods are critical. FECPAKG2 is a new remote-diagnostic tool used in veterinary medicine, which produces an image of the stool sample that can be stored on an internet cloud. We compared for the first time FECPAKG2 with the recommended Kato-Katz method. Two stool samples were collected from adolescent participants (age 15-18 years) at baseline and 14 to 21 days after treatment in the framework of a randomized clinical trial on Pemba Island, Tanzania. Stool samples were analyzed with different diagnostic efforts: i) one or ii) two Kato-Katz thick smears from the first sample, iii) two Kato-Katz thick smears from two samples and iv) FECPAKG2 from the first sample. Parameters were calculated based on a hierarchical Bayesian egg count model. Complete data for all diagnostic efforts were available from 615 participants at baseline and 231 hookworm-positive participants at follow-up. At baseline FECPAKG2 revealed a sensitivity of 75.6% (72.0-77.7) for detecting A. lumbricoides, 71.5% (67.4-95.3) for hookworm and 65.8% (64.9-66.2) for T. trichiura, which was significantly lower (all p<0.05) than any of the Kato-Katz methods and highly dependent on infection intensity. Despite that the egg counts based on FECPAKG2 were relatively lower compared to Kato-Katz by a ratio of 0.38 (0.32-0.43) for A. lumbricoides, 0.36 (0.33-0.40) for hookworm and 0.08 (0.07-0.09) for T. trichiura, the egg reduction rates (ERR) were correctly estimated with FECPAKG2. The sensitivity to identify any STH infection was considerably lower for FECPAKG2 compared to Kato-Katz. Following rigorous development, FECPAKG2 might be an interesting tool with unique features for epidemiological and clinical studies.
Faecal Parasitology: Concentration Methodology Needs to be Better Standardised
To determine whether variation in the preservative, pore size of the sieve, solvent, centrifugal force and centrifugation time used in the Ridley-Allen Concentration method for examining faecal specimens for parasite stages had any effect on their recovery in faecal specimens. A questionnaire was sent to all participants in the UK NEQAS Faecal Parasitology Scheme. The recovery of parasite stages was compared using formalin diluted in water or formalin diluted in saline as the fixative, 3 different pore sizes of sieve, ether or ethyl acetate as a solvent, 7 different centrifugal forces and 6 different centrifugation times according to the methods described by participants completing the questionnaire. The number of parasite stages recovered was higher when formalin diluted in water was used as fixative, a smaller pore size of sieve was used, ethyl acetate along with Triton X 100 was used as a solvent and a centrifugal force of 3,000 rpm for 3 minutes were employed. This study showed that differences in methodology at various stages of the concentration process affect the recovery of parasites from a faecal specimen and parasites present in small numbers could be missed if the recommended methodology is not followed.
Mini-FLOTAC and Kato-Katz: helminth eggs watching on the shore of lake Victoria
BACKGROUND: One of the challenges for monitoring helminth control programmes based on preventive chemotherapy is the lack of a copro-parasitological gold–standard method that combines good sensitivity with quantitative performance, low cost, and easy-to-learn technique. The aim of our study was to evaluate and compare, the WHO recommended quantitative diagnostic technique (Kato-Katz) and the Mini-FLOTAC. METHODS: Mini-FLOTAC is an innovative method based on floatation of helminths eggs with two different solutions (FS2 and FS7) using a close system (Fill-FLOTAC) with 5% fixative. Kato-Katz was performed following WHO recommendation. The study was carried out in a rural part of Tanzania, close to Lake Victoria, where the laboratory facilities are fairly scarce, and the basic technique used in the local laboratory (direct smear) was taken as reference standard. RESULTS: 201 children were screened for intestinal helminths and 91% of them were found to be positive. The agreement among the three techniques was calculated with k Cohen coefficient and was fairly good (k = 0.4), although the Mini-FLOTAC results were more sensitive for hookworm (98%) with FS2, and for S.mansoni (90%) with FS7 followed by Kato-Katz (91% and 60% respectively) and direct smear (30% and 10% respectively). A good agreement was found between Mini-FLOTAC and Kato-Katz (k = 0.81) with FS7 (k = 0.76) for hookworm diagnosis and a fairly good one for S.mansoni diagnosis (k = 0.5). For both infections we had a poor agreement between the two quantitative techniques and the direct smear (k<0.3). Kato-Katz diagnosed a higher number of eggs (calculated by arithmetic mean) both for hookworm (455 vs 424 EPG) and for S.mansoni (71 vs 58 EPG) compared with the Mini-FLOTAC, but the differences were not significant (p = 0.4). CONCLUSIONS: Mini-FLOTAC is a promising technique, comparable and as sensitive as the Kato-Katz, which is the recommended method in intestinal helminthology for monitoring helminth control programmes. A comparative advantage of the Mini-FLOTAC is that it comprises of a closed system with preserved samples that both protects the operators and allows subsequent examination of the samples. Further studies are needed to validate the mini-FLOTAC with other quantitative techniques (McMaster) and in different settings where other soil-transmitted helminths are also endemic.
An automated faecal egg count system for detection of Ascaridia galli ova in chickens
Chicken production has increased over the past decade, resulting in a concomitant rise in the demand for more humane options for poultry products including cage-free, free-range, and organic meat and eggs. These husbandry changes, however, have come hand-in-hand with increased prevalence of Ascaridia galli infection, which can cause clinical disease in chickens as well as the occasional appearance of worms in eggs. Additionally, development of anthelmintic resistance in closely related helminths of turkeys highlights the need for closely monitored anthelmintic treatment programs. Manual faecal egg counts (FECs) can be time-consuming and require specialist training. As such, this study sought to validate an automated FEC system for use in detection and quantification of A. galli eggs in chicken faeces. Automated counts using the Parasight System (PS) were compared to traditional manual McMaster counting for both precision and correlation between methods. Overall, ten repeated counts were performed on twenty individual samples for a total of 200 counts performed for each method. A strong, statistically significant correlation was found between methods (R2 = 0.7879, P < 0.0001), and PS counted more eggs and performed with statistically significant higher precision (P = 0.0391) than manual McMaster counting. This study suggests that PS is a good alternative method for performing A. galli FECs and provides a new tool for use in helminth treatment and control programs in chicken operations.