Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
1,179 result(s) for "Parasitic Diseases, Animal - mortality"
Sort by:
A pan-European epidemiological study reveals honey bee colony survival depends on beekeeper education and disease control
Reports of honey bee population decline has spurred many national efforts to understand the extent of the problem and to identify causative or associated factors. However, our collective understanding of the factors has been hampered by a lack of joined up trans-national effort. Moreover, the impacts of beekeeper knowledge and beekeeping management practices have often been overlooked, despite honey bees being a managed pollinator. Here, we established a standardised active monitoring network for 5 798 apiaries over two consecutive years to quantify honey bee colony mortality across 17 European countries. Our data demonstrate that overwinter losses ranged between 2% and 32%, and that high summer losses were likely to follow high winter losses. Multivariate Poisson regression models revealed that hobbyist beekeepers with small apiaries and little experience in beekeeping had double the winter mortality rate when compared to professional beekeepers. Furthermore, honey bees kept by professional beekeepers never showed signs of disease, unlike apiaries from hobbyist beekeepers that had symptoms of bacterial infection and heavy Varroa infestation. Our data highlight beekeeper background and apicultural practices as major drivers of honey bee colony losses. The benefits of conducting trans-national monitoring schemes and improving beekeeper training are discussed.
Disease mortality in domesticated animals is predicted by host evolutionary relationships
Infectious diseases of domesticated animals impact human well-being via food insecurity, loss of livelihoods, and human infections. While much research has focused on parasites that infect single host species, most parasites of domesticated mammals infect multiple species. The impact of multihost parasites varies across hosts; some rarely result in death, whereas others are nearly always fatal. Despite their high ecological and societal costs, we currently lack theory for predicting the lethality of multihost parasites. Here, using a global dataset of >4,000 case-fatality rates for 65 infectious diseases (caused by microparasites and macroparasites) and 12 domesticated host species, we show that the average evolutionary distance from an infected host to other mammal host species is a strong predictor of disease-induced mortality. We find that as parasites infect species outside of their documented phylogenetic host range, they are more likely to result in lethal infections, with the odds of death doubling for each additional 10 million years of evolutionary distance. Our results for domesticated animal diseases reveal patterns in the evolution of highly lethal parasites that are difficult to observe in the wild and further suggest that the severity of infectious diseases may be predicted from evolutionary relationships among hosts.
IgT, a primitive immunoglobulin class specialized in mucosal immunity
Fish lack immunoglobulin A, which suggests that they lack specialized mucosal antibodies. Sunyer and colleagues show that immunoglobulin T fulfills this mucosal antibody function and engenders protection against gut parasites. Teleost fish are the most primitive bony vertebrates that contain immunoglobulins. In contrast to mammals and birds, these species are devoid of immunoglobulin A (IgA) or a functional equivalent. This observation suggests that specialization of immunoglobulin isotypes into mucosal and systemic responses took place during tetrapod evolution. Challenging that paradigm, here we show that IgT, an immunoglobulin isotype of unknown function, acts like a mucosal antibody. We detected responses of rainbow trout IgT to an intestinal parasite only in the gut, whereas IgM responses were confined to the serum. IgT coated most intestinal bacteria. As IgT and IgA are phylogenetically distant immunoglobulins, their specialization into mucosal responses probably occurred independently by a process of convergent evolution.
A participatory surveillance of marsh deer (Blastocerus dichotomus) morbidity and mortality in Argentina: first results
Background In an era of unprecedented socio-ecological changes, managing wildlife health demands high-quality data collection and the engagement of local communities. Blastocerus dichotomus , the largest South American deer, is Vulnerable to extinction mainly due to habitat loss. Diseases have been recognised as a potential threat, and winter mortality has been historically described in marsh deer populations from Argentina. Field difficulties have, however, prevented in-depth studies of their health status. Results Between May 2014 and April 2017, we investigated marsh deer morbidity and mortality in the two largest populations in Argentina. We collected data by means of a passive surveillance system that involved a network of researchers, field partners (veterinarians, park rangers, and local community), and decision makers. We sampled marsh deer during as well as outside mortality events. A total of 44 marsh deer with different body condition scores were evaluated. We obtained haematology and biochemistry values from animals with good body condition score. Marsh deer with poor body condition had a high burden of the ticks Amblyomma triste and Rhipicephalus microplus . Vector-borne agents such as Theileria cervi , Trypanosoma theileri, Trypanosoma evansi, Ehrlichia chaffeensis, Anaplasma platys, Anaplasma odocoilei, Anaplasma marginale , and Candidatus Anaplasma boleense were also found. Haemonchus spp., Ostertagia spp., and Trichostrongylus spp. were the most frequent gastrointestinal parasites in deer with poor body condition. A Multiple Correspondence Analysis reinforced a possible association of winter period with lower body score condition, high tick loads, infection with E. chaffeensis , and presence of harmful gastrointestinal parasites. Conclusions Our approach allowed the establishment of a participatory surveillance network of marsh deer morbidity and mortality in Argentina. We report and analyse the first data obtained opportunistically within the framework of this network, providing information on the infectious and parasitic agents in marsh deer populations. The occurrence of Fasciola hepatica and Leptospira interrogans serovar pyrogenes is reported for the first time in wild marsh deer from Argentina. Our data will be useful to improve the interpretation of future mortality events. The field implementation of a surveillance network is key to a holistic approach to wildlife diseases.
Causes of mortality and morbidity in free-ranging mustelids in Switzerland: necropsy data from over 50 years of general health surveillance
Background Although mustelids occur worldwide and include a wide range of species, little is known about the diseases affecting them. Mustelids have regularly been submitted for post mortem investigation in the framework of the program for general wildlife health surveillance in Switzerland, which has been in place for nearly 60 years. We performed a retrospective analysis of the necropsy reports on mustelids submitted to the diagnostic service of the University of Bern. The aims of this study were to present an overview of the causes of mortality and morbidity observed in these carnivores, to assess differences among species, to assess changes in disease detection over the study period, and to describe the pathology of selected diseases. Results Five hundred and sixty-six reports from 1958 to 2015 were analyzed. Most animals were stone martens ( Martes foina, 46%) and badgers ( Meles meles , 44%); the remaining species were polecats ( Mustela putorius , 4.7%), pine martens ( Martes martes , 2%), stoats ( Mustela erminea , 1.4%), weasels ( Mustela nivalis , 0.8%) and otters ( Lutra lutra , 0.3%). Infectious diseases ( n  = 262) were frequent and were mostly bacterial or viral; non-infectious conditions ( n  = 169) were less common and were mostly traumatic or due to metabolic disorders. The most frequent diagnoses included distemper (75% were badgers), amyloidosis (96% were martens), bacterial respiratory infections (all mustelids), biting lice (badgers only) and pulmonary and gastro-intestinal helminths (all species). Less frequent diseases included histoplasmosis (badgers only), aspergillosis, toxoplasmosis, hepatozoonosis, and sarcoptic mange. Lesions due to infection with distemper virus were primarily appreciated in the respiratory tract and central nervous system; they presented species-specific characteristics such as necrosis in the ependyma in badgers and absence of syncytia in stone martens. Amyloidosis in martens was multisystemic in most cases and included both AA and AL amyloidosis; the main macroscopic change was severe splenomegaly. Conclusion Infectious diseases were the most frequent causes of morbidity and mortality of mustelids, with marked species-specific differences. Lung and skin were the most commonly affected organs. Contagious diseases such as canine distemper, sarcoptic mange and rabies in mustelids showed a similar temporal pattern as in red foxes ( Vulpes vulpes ), suggesting pathogen spillovers from foxes to mustelids.
Descriptions of Mikrocytos veneroïdes n. sp. and Mikrocytos donaxi n. sp. (Ascetosporea: Mikrocytida: Mikrocytiidae), detected during important mortality events of the wedge clam Donax trunculus Linnaeus (Veneroida: Donacidae), in France between 2008 and 2011
Background Microcell parasites are small intracellular protozoans mostly detected in molluscs and can be associated with mortalities. In 2010 and 2011, strong increases in mortality events were reported in different wild beds of the wedge clam Donax trunculus Linnaeus, along the Atlantic coast of France and the presence of potential pathogens, including microcells, was investigated. Methods Clams collected in different beds showing mortality were examined by histology. Based on histological observations, confirmatory analyses were carried out, including transmission electron microscopy (TEM) and molecular characterization. Results Histological analyses revealed the presence of small protozoans similar to microcell parasites in different tissues of Donax trunculus , particularly in muscular and connective tissues. TEM examination confirmed the intracellular localization of the protozoans. Moreover, the lack of haplosporosomes and mitochondria suggested that the observed parasites belong to the genus Mikrocytos Farley, Wolf & Elston, 1988. Mikrocytos genus-specific PCR and in situ hybridization results supported the microscopic observations. Sequence fragments of the 18S rRNA gene shared 75–83% identity with the different Mikrocytos spp. described previously, including Mikrocytos mackini Farley, Wolf & Elston, 1988 and M. boweri Abbott, Meyer, Lowe, Kim & Johnson, 2014. Phylogenetic analyses confirmed that the microcell parasites observed in Donax trunculus in France belong to the genus Mikrocytos and suggest the existence of two distinct species. Conclusions Based on morphological, ultrastructural, molecular data and host information, the two microcell parasites detected in Donax trunculus belong to the genus Mikrocytos and are distinct from previously described members of this genus. This is the first report of Mikrocytos spp. found in France and infecting the clam Donax trunculus . Mikrocytos veneroïdes n. sp. was detected in different wild beds and Mikrocytos donaxi n. sp. was detected only in Audierne Bay.
Causes of mortality in laying hens in different housing systems in 2001 to 2004
Background The husbandry systems for laying hens were changed in Sweden during the years 2001 – 2004, and an increase in the number of submissions for necropsy from laying hen farms was noted. Hence, this study was initiated to compare causes of mortality in different housing systems for commercial laying hens during this change. Methods Based on results from routine necropsies of 914 laying hens performed at the National Veterinary Institute (SVA) in Uppsala, Sweden between 2001 and 2004, a retrospective study on the occurrence of diseases and cannibalism, i.e., pecking leading to mortality, in different housing systems was carried out. Using the number of disease outbreaks in caged flocks as the baseline, the expected number of flocks with a certain category of disease in the other housing systems was estimated having regard to the total number of birds in the population. Whether the actual number of flocks significantly exceeded the expected number was determined using a Poisson distribution for the variance of the baseline number, a continuity correction and the exact value for the Poisson distribution function in Excel 2000. Results Common causes of mortality in necropsied laying hens included colibacillosis, erysipelas, coccidiosis, red mite infestation, lymphoid leukosis and cannibalism. Less common diagnoses were Newcastle Disease, pasteurellosis and botulism. Considering the size of the populations in the different housing systems, a larger proportion of laying hens than expected was submitted for necropsy from litter-based systems and free range production compared to hens in cages ( P < 0.001). The study showed a significantly higher occurrence of bacterial and parasitic diseases and cannibalism in laying hens kept in litter-based housing systems and free-range systems than in hens kept in cages ( P < 0.001). The occurrence of viral diseases was significantly higher in indoor litter-based housing systems than in cages ( P < 0.001). Conclusion The results of the present study indicated that during 2001–2004 laying hens housed in litter-based housing systems, with or without access to outdoor areas, were at higher risk of infectious diseases and cannibalistic behaviour compared to laying hens in cages. Future research should focus on finding suitable prophylactic measures, including efficient biosecurity routines, to reduce the risk of infectious diseases and cannibalism in litter-based housing systems for laying hens.
Proliferative kidney disease (PKD) of rainbow trout: temperature- and time-related changes of Tetracapsuloides bryosalmonae DNA in the kidney
Proliferative kidney disease (PKD) of salmonids, caused by Tetracapsuloides bryosalmonae, can lead to high mortalities at elevated water temperature. We evaluated the hypothesis that this mortality is caused by increasing parasite intensity. T. bryosalmonae-infected rainbow trout (Oncorhynchus mykiss) were reared at different water temperatures and changes in parasite concentrations in the kidney were compared to cumulative mortalities. Results of parasite quantification by a newly developed real-time PCR agreed with the number of parasites detected by immunohistochemistry, except for very low or very high parasite loads because of heterogenous distribution of the parasites in the kidney. Two experiments were performed, where fish were exposed to temperatures of 12, 14, 16, 18 or 19°C after an initial exposure to an infectious environment at 12–16°C resulting in 100% prevalence of infected fish after 5 to 14 days of exposure. While mortalities differed significantly between all investigated water temperatures, significant differences in final parasite loads were only found between fish kept at 12°C and all other groups. Differences in parasite load between fish kept at 14°C to 19°C were not significant. These findings provide evidence that there is no direct link between parasite intensity and fish mortality.
Relationship Between Temperature and Ceratomyxa shasta–Induced Mortality In Klamath River Salmonids
Water temperature influences almost every biological and physiological process of salmon, including disease resistance. In the Klamath River (California), current thermal conditions are considered sub-optimal for juvenile salmon. In addition to borderline temperatures, these fish must contend with the myxozoan parasite Ceratomyxa shasta, a significant cause of juvenile salmonid mortality in this system. This paper presents 2 studies, conducted from 2007 to 2010, that examine thermal effects on C. shasta–induced mortality in native Klamath River Chinook (Oncorhynchus tshawytscha) and coho (Oncorhynchus kisutch) salmon. In each study, fish were exposed to C. shasta in the Klamath River for 72 hr and then reared in the laboratory under temperature-controlled conditions. The first study analyzed data collected from a multi-year monitoring project to asses the influence of elevated temperatures on parasite-induced mortality during the spring/summer migration period. The second study compared disease progression in both species at 4 temperatures (13, 15, 18, and 21 C) representative of spring/summer migration conditions. Both studies demonstrated that elevated water temperatures consistently resulted in higher mortality and faster mean days to death. However, analysis of data from the multi-year monitoring showed that the magnitude of this effect varied among years and was more closely associated with parasite density than with temperature. Also, there was a difference in the timing of peak mortality between species; Chinook incurred high mortalities in 2008 and 2009, whereas coho was greatest in 2007 and 2008. As neither temperature nor parasite density can be easily manipulated, management strategies should focus on disrupting the overlap of this parasite and its obligate hosts to improve emigration success and survival of juvenile salmon in the Klamath River.
Mass-mortality in green striped tree dragons (Japalura splendida) associated with multiple viral infections
In spring 2011, high mortality in association with skin lesions, systemic haemorrhages and necrosis occurred in a group of green striped tree dragons (Japalura splendida) which were imported from southwestern China via Florida to Germany. Infections with various endoparasites were diagnosed in coprological examinations. Different antiparasitic and antibiotic treatments over a period of three months did not reduce the mortality rate. The remaining animals were therefore euthanased and submitted for additional testing. Predominant findings in pathological examination were granulomatous and necrotising inflammation of the skin, vacuolar tubulonephrosis of the distal renal tubules, hyperaemia and liver necrosis. Eosinophilic intranuclear and basophilic intracytoplasmic inclusion bodies were detected in the liver. Virological testing (PCR and virus isolation methods) demonstrated the presence of ranavirus, adenovirus and invertebrate iridovirus.