Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
5,963 result(s) for "Parietal lobes"
Sort by:
History-based action selection bias in posterior parietal cortex
Making decisions based on choice-outcome history is a crucial, adaptive ability in life. However, the neural circuit mechanisms underlying history-dependent decision-making are poorly understood. In particular, history-related signals have been found in many brain areas during various decision-making tasks, but the causal involvement of these signals in guiding behavior is unclear. Here we addressed this issue utilizing behavioral modeling, two-photon calcium imaging, and optogenetic inactivation in mice. We report that a subset of neurons in the posterior parietal cortex (PPC) closely reflect the choice-outcome history and history-dependent decision biases, and PPC inactivation diminishes the history dependency of choice. Specifically, many PPC neurons show history- and bias-tuning during the inter-trial intervals (ITI), and history dependency of choice is affected by PPC inactivation during ITI and not during trial. These results indicate that PPC is a critical region mediating the subjective use of history in biasing action selection. Past outcomes modulate activity in a diverse set of brain regions however their precise influence on decisions is not known. Here the authors show that posterior parietal cortex neurons encode history-related signals between trials and optogenetic inactivation during this epoch disrupts the history dependence of choice.
Increased excitatory to inhibitory synaptic ratio in parietal cortex samples from individuals with Alzheimer’s disease
Synaptic disturbances in excitatory to inhibitory (E/I) balance in forebrain circuits are thought to contribute to the progression of Alzheimer’s disease (AD) and dementia, although direct evidence for such imbalance in humans is lacking. We assessed anatomical and electrophysiological synaptic E/I ratios in post-mortem parietal cortex samples from middle-aged individuals with AD (early-onset) or Down syndrome (DS) by fluorescence deconvolution tomography and microtransplantation of synaptic membranes. Both approaches revealed significantly elevated E/I ratios for AD, but not DS, versus controls. Gene expression studies in an independent AD cohort also demonstrated elevated E/I ratios in individuals with AD as compared to controls. These findings provide evidence of a marked pro-excitatory perturbation of synaptic E/I balance in AD parietal cortex, a region within the default mode network that is overly active in the disorder, and support the hypothesis that E/I imbalances disrupt cognition-related shifts in cortical activity which contribute to the intellectual decline in AD. Synaptic loss may disturb the excitatory to inhibitory balance (E/I ratio) in circuits vulnerable in Alzheimer’s disease (AD). The authors find reduced synaptic levels of PSD-95 and gephyrin and show that individuals with AD exhibit a pro-excitatory shift of postsynaptic densities and the electrophysiological synaptic E/I ratio in the parietal cortex.
Functional specialization within the inferior parietal lobes across cognitive domains
The inferior parietal lobe (IPL) is a key neural substrate underlying diverse mental processes, from basic attention to language and social cognition, that define human interactions. Its putative domain-global role appears to tie into poorly understood differences between cognitive domains in both hemispheres. Across attentional, semantic, and social cognitive tasks, our study explored functional specialization within the IPL. The task specificity of IPL subregion activity was substantiated by distinct predictive signatures identified by multivariate pattern-learning algorithms. Moreover, the left and right IPL exerted domain-specific modulation of effective connectivity among their subregions. Task-evoked functional interactions of the anterior and posterior IPL subregions involved recruitment of distributed cortical partners. While anterior IPL subregions were engaged in strongly lateralized coupling links, both posterior subregions showed more symmetric coupling patterns across hemispheres. Our collective results shed light on how under-appreciated hemispheric specialization in the IPL supports some of the most distinctive human mental capacities.
Diverse neuronal activity patterns contribute to the control of distraction in the prefrontal and parietal cortex
Goal-directed behavior requires the effective suppression of distractions to focus on the task at hand. Although experimental evidence suggests that brain areas in the prefrontal and parietal lobe contribute to the selection of task-relevant and the suppression of task-irrelevant stimuli, how conspicuous distractors are encoded and effectively ignored remains poorly understood. We recorded neuronal responses from 2 regions in the prefrontal and parietal cortex of macaques, the frontal eye field (FEF) and the lateral intraparietal (LIP) area, during a visual search task, in the presence and absence of a salient distractor. We found that in both areas, salient distractors are encoded by both response enhancement and suppression by distinct neuronal populations. In FEF, a larger proportion of units displayed suppression of responses to the salient distractor compared to LIP, with suppression effects in FEF being correlated with search time. Moreover, in FEF but not in LIP, the suppression for the salient distractor compared to non-salient distractors that shared the target color could not be accounted for by an enhancement of target features. These results reveal a distinct contribution of FEF in the suppression of salient distractors. Critically, we found that in both areas, the population level representations of the target and singleton locations were not orthogonal, suggesting a mechanism of interference from salient stimuli.
The human inferior parietal cortex: Cytoarchitectonic parcellation and interindividual variability
The inferior parietal cortex (IPC) integrates information from different sensory modalities and plays an important role in a variety of higher cognitive functions. Brodmann (Brodmann, K., 1909. Vergleichende Lokalisationslehre der Großhirnrinde. Barth, Leipzig) proposed a cytoarchitectonic subdivision of the IPC into only two cortical areas, a rostral (BA 40) and a caudal (BA 39) area. Although his scheme was repeatedly challenged by other observers, it is still used for the anatomical localization of functional imaging data. The apparent differences between all these cyto- and myeloarchitectonic maps may be caused partly by the observer-dependent procedure of defining cytoarchitectonic borders by pure visual inspection of histological sections and partly by the interindividual variability of cytoarchitecture. The present observations and the resulting cortical map of the IPC are based on quantitative, observer-independent definitions of cytoarchitectonic borders and take into account each area's topographical variability across brains. Ten human postmortem brains were scanned using an MRI 3-D FLASH sequence prior to histological processing. After embedding in paraffin, serial sections through whole brains were prepared, and the sections were stained for cell bodies. Following high-resolution digitization of sections containing the IPC, we defined the cytoarchitecture and borders of each cortical area of this brain region using a multivariate statistical analysis of laminar cell density profiles. In contrast to previous observations, we found seven cytoarchitectonic areas in the IPC: five in the rostral (covering the region of BA 40) and two in the caudal part (covering the region of BA 39). We observed considerable interindividual variability in the topography of each area. A consistent correspondence between macroanatomical landmarks and cytoarchitectonic borders was not found. This new cytoarchitectonic map of the human IPC demonstrates regional differences in the cortical microstructure that is suggestive of functional differentiation. Furthermore, the map is registered in three dimensions and thereby provides a robust anatomical base for interpreting functional imaging studies.
Preserved Feedforward But Impaired Top-Down Processes in the Vegetative State
Frontoparietal cortex is involved in the explicit processing (awareness) of stimuli. Frontoparietal activation has also been found in studies of subliminal stimulus processing. We hypothesized that an impairment of top-down processes, involved in recurrent neuronal message-passing and the generation of long-latency electrophysiological responses, might provide a more reliable correlate of consciousness in severely brain-damaged patients, than frontoparietal responses. We measured effective connectivity during a mismatch negativity paradigm and found that the only significant difference between patients in a vegetative state and controls was an impairment of backward connectivity from frontal to temporal cortices. This result emphasizes the importance of top-down projections in recurrent processing that involve high-order associative cortices for conscious perception.
Brain mechanisms associated with internally directed attention and self-generated thought
Internal cognition like imagination and prospection require sustained internally directed attention and involve self-generated thought. This fMRI study aimed to disentangle the brain mechanisms associated with attention-specific and task-specific processes during internally directed cognition. The direction of attention was manipulated by either keeping a relevant stimulus visible throughout the task, or by masking it, so that the task had to be performed “in the mind’s eye”. The level of self-directed thought was additionally varied between a convergent and a divergent thinking task. Internally directed attention was associated with increased activation in the right anterior inferior parietal lobe (aIPL), bilateral lingual gyrus and the cuneus, as well as with extended deactivations of superior parietal and occipital regions representing parts of the dorsal attention network. The right aIPL further showed increased connectivity with occipital regions suggesting an active top-down mechanism for shielding ongoing internal processes from potentially distracting sensory stimulation in terms of perceptual decoupling. Activation of the default network was not related to internally directed attention per se, but rather to a higher level of self-generated thought. The findings hence shed further light on the roles of inferior and superior parietal cortex for internally directed cognition.
Emotionotopy in the human right temporo-parietal cortex
Humans use emotions to decipher complex cascades of internal events. However, which mechanisms link descriptions of affective states to brain activity is unclear, with evidence supporting either local or distributed processing. A biologically favorable alternative is provided by the notion of gradient, which postulates the isomorphism between functional representations of stimulus features and cortical distance. Here, we use fMRI activity evoked by an emotionally charged movie and continuous ratings of the perceived emotion intensity to reveal the topographic organization of affective states. Results show that three orthogonal and spatially overlapping gradients encode the polarity, complexity and intensity of emotional experiences in right temporo-parietal territories. The spatial arrangement of these gradients allows the brain to map a variety of affective states within a single patch of cortex. As this organization resembles how sensory regions represent psychophysical properties (e.g., retinotopy), we propose emotionotopy as a principle of emotion coding. People can experience a wide variety of emotions, and how the brain represents these varying affective states is a matter of debate. Here the authors show that coding mechanisms of emotions in right temporo-parietal cortex resemble those of low-level stimulus features in primary sensory regions.
Organization of the macaque monkey inferior parietal lobule based on multimodal receptor architectonics
•Cyto- and receptor-based parcellation of macaque inferior parietal lobe (IPL).•Caudo-rostral gradients found in the architectonic organization of IPL areas.•Hierarchical analysis segregated IPL areas into rostral and caudal clusters.•Novel insights into homologies between human and macaque IPL areas. The macaque monkey inferior parietal lobe (IPL) is a structurally heterogeneous brain region, although the number of areas it contains and the anatomical/functional relationship of identified subdivisions remains controversial. Neurotransmitter receptor distribution patterns not only reveal the position of the cortical borders, but also segregate areas associated to different functional systems. Thus we carried out a multimodal quantitative analysis of the cyto- and receptor architecture of the macaque IPL to determine the number and extent of distinct areas it encompasses. We identified four areas on the IPL convexity arranged in a caudo-rostral sequence, as well as two areas in the parietal operculum, which we projected onto the Yerkes19 surface. We found rostral areas to have relatively smaller receptor fingerprints than the caudal ones, which is in an agreement with the functional gradient along the caudo-rostral axis described in previous studies. The hierarchical analysis segregated IPL areas into two clusters: the caudal one, contains areas involved in multisensory integration and visual-motor functions, and rostral cluster, encompasses areas active during motor planning and action-related functions. The results of the present study provide novel insights into clarifying the homologies between human and macaque IPL areas. The ensuing 3D map of the macaque IPL, and the receptor fingerprints are made publicly available to the neuroscientific community via the Human Brain Project and BALSA repositories for future cyto- and/or receptor architectonically driven analyses of functional imaging studies in non-human primates.
The parietal lobe evolution and the emergence of material culture in the human genus
Traditional and new disciplines converge in suggesting that the parietal lobe underwent a considerable expansion during human evolution. Through the study of endocasts and shape analysis, paleoneurology has shown an increased globularity of the braincase and bulging of the parietal region in modern humans, as compared to other human species, including Neandertals. Cortical complexity increased in both the superior and inferior parietal lobules. Emerging fields bridging archaeology and neuroscience supply further evidence of the involvement of the parietal cortex in human-specific behaviors related to visuospatial capacity, technological integration, self-awareness, numerosity, mathematical reasoning and language. Here, we complement these inferences on the parietal lobe evolution, with results from more classical neuroscience disciplines, such as behavioral neurophysiology, functional neuroimaging, and brain lesions; and apply these to define the neural substrates and the role of the parietal lobes in the emergence of functions at the core of material culture, such as tool-making, tool use and constructional abilities.