Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Reading Level
      Reading Level
      Clear All
      Reading Level
  • Content Type
      Content Type
      Clear All
      Content Type
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Item Type
    • Is Full-Text Available
    • Subject
    • Publisher
    • Source
    • Donor
    • Language
    • Place of Publication
    • Contributors
    • Location
2,888 result(s) for "Parkinson Disease - rehabilitation"
Sort by:
Pilates and Parkinson's
\"We decided to write this book to provide a useful guide to two groups of people. Firstly, for those diagnosed with Parkinson's who are looking for a safe form of exercise that could work for them. ... a number of clients ... tell us how their increased flexibility and strength as well as their improved balance and walking have helped them to remain independent. Secondly, we hope this book will also be enjoyed by Pilates instructors who are wondering how they can best help a client who comes in with a diagnosis of Parkinson's.\" -- Introduction [ix].
Cueing training in the home improves gait-related mobility in Parkinson’s disease: the RESCUE trial
Objectives: Gait and mobility problems are difficult to treat in people with Parkinson’s disease. The Rehabilitation in Parkinson’s Disease: Strategies for Cueing (RESCUE) trial investigated the effects of a home physiotherapy programme based on rhythmical cueing on gait and gait-related activity. Methods: A single-blind randomised crossover trial was set up, including 153 patients with Parkinson’s disease aged between 41 and 80 years and in Hoehn and Yahr stage II–IV. Subjects allocated to early intervention (n = 76) received a 3-week home cueing programme using a prototype cueing device, followed by 3 weeks without training. Patients allocated to late intervention (n = 77) underwent the same intervention and control period in reverse order. After the initial 6 weeks, both groups had a 6-week follow-up without training. Posture and gait scores (PG scores) measured at 3, 6 and 12 weeks by blinded testers were the primary outcome measure. Secondary outcomes included specific measures on gait, freezing and balance, functional activities, quality of life and carer strain. Results: Small but significant improvements were found after intervention of 4.2% on the PG scores (p = 0.005). Severity of freezing was reduced by 5.5% in freezers only (p = 0.007). Gait speed (p = 0.005), step length (p<0.001) and timed balance tests (p = 0.003) improved in the full cohort. Other than a greater confidence to carry out functional activities (Falls Efficacy Scale, p = 0.04), no carry-over effects were observed in functional and quality of life domains. Effects of intervention had reduced considerably at 6-week follow-up. Conclusions: Cueing training in the home has specific effects on gait, freezing and balance. The decline in effectiveness of intervention effects underscores the need for permanent cueing devices and follow-up treatment. Cueing training may be a useful therapeutic adjunct to the overall management of gait disturbance in Parkinson’s disease.
Evaluating Heart Rate Variability as a Biomarker for Autonomic Function in Parkinson’s Disease Rehabilitation: A Clustering-Based Analysis of Exercise-Induced Changes
Background: Heart rate variability (HRV) is a key biomarker reflecting autonomic nervous system (ANS) function and neurocardiac regulation. Reduced HRV has been associated with cardiovascular risk, neurodegenerative disorders, and autonomic dysfunction. In Parkinson’s disease (PD), HRV impairments indicate altered autonomic balance, which may be modifiable through structured exercise interventions. This study investigates the effects of aerobic exercise on HRV in patients with PD and evaluates autonomic adaptations to rehabilitation. Methods: A total of 110 patients with PD (55 male, 55 female) participated in a supervised three-month aerobic exercise program. HRV was assessed pre- and post-intervention using electrocardiogram (ECG) recordings. Time-domain and frequency-domain HRV metrics, including standard deviation of RR intervals (SDRR), very-low-frequency (VLF), low-frequency (LF), high-frequency (HF) power, and LF/HF ratio, were analyzed. Principal Component Analysis (PCA) and clustering techniques were applied to identify subgroups of HRV responders based on autonomic adaptation. Results: Significant improvements in HRV were observed post-intervention, with a reduction in LF/HF ratio (p < 0.05), indicating improved autonomic balance. Cluster analysis identified four distinct HRV response subgroups: Strong Responders, Moderate Responders, Mixed/Irregular Responders, and Low Responders. These findings highlight individual variability in autonomic adaptations to exercise. PCA revealed that key HRV parameters contribute differently to autonomic regulation, emphasizing the complexity of HRV changes in PD rehabilitation. Conclusions: This study demonstrates that aerobic exercise induces beneficial autonomic adaptations in PD patients, as reflected by HRV changes. The identification of response subgroups suggests the need for personalized rehabilitation strategies to optimize autonomic function. Further research is warranted to explore the long-term impact of HRV-guided rehabilitation interventions in PD management.
Music-based interventions in neurological rehabilitation
During the past ten years, an increasing number of controlled studies have assessed the potential rehabilitative effects of music-based interventions, such as music listening, singing, or playing an instrument, in several neurological diseases. Although the number of studies and extent of available evidence is greatest in stroke and dementia, there is also evidence for the effects of music-based interventions on supporting cognition, motor function, or emotional wellbeing in people with Parkinson's disease, epilepsy, or multiple sclerosis. Music-based interventions can affect divergent functions such as motor performance, speech, or cognition in these patient groups. However, the psychological effects and neurobiological mechanisms underlying the effects of music interventions are likely to share common neural systems for reward, arousal, affect regulation, learning, and activity-driven plasticity. Although further controlled studies are needed to establish the efficacy of music in neurological recovery, music-based interventions are emerging as promising rehabilitation strategies.
Effects of virtual reality rehabilitation training on gait and balance in patients with Parkinson's disease: A systematic review
In recent years, virtual reality (VR) has been tested as a therapeutic tool in neurorehabilitation research. However, the impact effectiveness of VR technology on for Parkinson's Disease (PD) patients is still remains controversial unclear. In order to provide a more scientific basis for rehabilitation of PD patients' modality, we conducted a systematic review of VR rehabilitation training for PD patients and focused on the improvement of gait and balance. An comprehensive search was conducted using the following databases: PubMed, Web of Science, Cochrane Library, CINHAL, Embase and CNKI (China National Knowledge Infrastructure).Articles published before 30 December 2018 and of a randomized controlled trial design to study the effects of VR for patients with PD were included. The study data were pooled and a meta-analysis was completed. This systematic review was conducted in accordance with the PRISMA guideline statement and was registered in the PROSPERO database (CRD42018110264). A total of sixteen articles involving 555 participants with PD were included in our analysis. VR rehabilitation training performed better than conventional or traditional rehabilitation training in three aspects: step and stride length (SMD = 0.72, 95%CI = 0.40,1.04, Z = 4.38, P<0.01), balance function (SMD = 0.22, 95%CI = 0.01,0.42, Z = 2.09, P = 0.037), and mobility(MD = -1.95, 95%CI = -2.81,-1.08, Z = 4.41, P<0.01). There was no effect on the dynamic gait index (SMD = -0.15, 95%CI = -0.50,0.19, Z = 0.86, P = 0.387), and gait speed (SMD = 0.19, 95%CI = -0.03,0.40, Z = 1.71, P = 0.088).As for the secondary outcomes, compared with the control group, VR rehabilitation training demonstrated more significant effects on the improvement of quality of life (SMD = -0.47, 95%CI = -0.73,-0.22, Z = 3.64, P<0.01), level of confidence (SMD = -0.73, 95%CI = -1.43,-0.03, Z = 2.05, P = 0.040), and neuropsychiatric symptoms (SMD = -0.96, 95%CI = -1.27,-0.65, Z = 6.07, P<0.01), while it may have similar effects on global motor function (SMD = -0.50, 95%CI = -1.48,0.48, Z = 0.99, P = 0.32), activities of daily living (SMD = 0.25, 95%CI = -0.14,0.64, Z = 1.24, P = 0.216), and cognitive function (SMD = 0.21, 95%CI = -0.28,0.69, Z = 0.84, P = 0.399).During the included interventions, four patients developed mild dizziness and one patient developed severe dizziness and vomiting. According to the results of this study, we found that VR rehabilitation training can not only achieve the same effect as conventional rehabilitation training. Moreover, it has better performance on gait and balance in patients with PD. Taken together, when the effect of traditional rehabilitation training on gait and balance of PD patients is not good enough, we believe that VR rehabilitation training can at least be used as an alternative therapy. More rigorous design of large-sample, multicenter randomized controlled trials are needed to provide a stronger evidence-based basis for verifying its potential advantages.
Freezing of gait and fall detection in Parkinson’s disease using wearable sensors: a systematic review
Despite the large number of studies that have investigated the use of wearable sensors to detect gait disturbances such as Freezing of gait (FOG) and falls, there is little consensus regarding appropriate methodologies for how to optimally apply such devices. Here, an overview of the use of wearable systems to assess FOG and falls in Parkinson’s disease (PD) and validation performance is presented. A systematic search in the PubMed and Web of Science databases was performed using a group of concept key words. The final search was performed in January 2017, and articles were selected based upon a set of eligibility criteria. In total, 27 articles were selected. Of those, 23 related to FOG and 4 to falls. FOG studies were performed in either laboratory or home settings, with sample sizes ranging from 1 PD up to 48 PD presenting Hoehn and Yahr stage from 2 to 4. The shin was the most common sensor location and accelerometer was the most frequently used sensor type. Validity measures ranged from 73–100% for sensitivity and 67–100% for specificity. Falls and fall risk studies were all home-based, including samples sizes of 1 PD up to 107 PD, mostly using one sensor containing accelerometers, worn at various body locations. Despite the promising validation initiatives reported in these studies, they were all performed in relatively small sample sizes, and there was a significant variability in outcomes measured and results reported. Given these limitations, the validation of sensor-derived assessments of PD features would benefit from more focused research efforts, increased collaboration among researchers, aligning data collection protocols, and sharing data sets.
Wearable Solutions for Patients with Parkinson’s Disease and Neurocognitive Disorder: A Systematic Review
Prevalence of neurocognitive diseases in adult patients demands the use of wearable devices to transform the future of mental health. Recent development in wearable technology proclaimed its use in diagnosis, rehabilitation, assessment, and monitoring. This systematic review presents the state of the art of wearables used by Parkinson’s disease (PD) patients or the patients who are going through a neurocognitive disorder. This article is based on PRISMA guidelines, and the literature is searched between January 2009 to January 2020 analyzing four databases: PubMed, IEEE Xplorer, Elsevier, and ISI Web of Science. For further validity of articles, a new PEDro-inspired technique is implemented. In PEDro, five statistical indicators were set to classify relevant articles and later the citations were also considered to make strong assessment of relevant articles. This led to 46 articles that met inclusion criteria. Based on them, this systematic review examines different types of wearable devices, essential in improving early diagnose and monitoring, emphasizing their role in improving the quality of life, differentiating the various fitness and gait wearable-based exercises and their impact on the regression of disease and on the motor diagnosis tests and finally addressing the available wearable insoles and their role in rehabilitation. The research findings proved that sensor based wearable devices, and specially instrumented insoles, help not only in monitoring and diagnosis but also in tracking numerous exercises and their positive impact towards the improvement of quality of life among different Parkinson and neurocognitive patients.
Virtual reality in research and rehabilitation of gait and balance in Parkinson disease
Virtual reality (VR) technology has emerged as a promising tool for studying and rehabilitating gait and balance impairments in people with Parkinson disease (PD) as it allows users to be engaged in an enriched and highly individualized complex environment. This Review examines the rationale and evidence for using VR in the assessment and rehabilitation of people with PD, makes recommendations for future research and discusses the use of VR in the clinic. In the assessment of people with PD, VR has been used to manipulate environments to enhance study of the behavioural and neural underpinnings of gait and balance, improving understanding of the motor–cognitive neural circuitry involved. Despite suggestions that VR can provide rehabilitation that is more effective and less labour intensive than non-VR rehabilitation, little evidence exists to date to support these claims. Nevertheless, much unrealized potential exists for the use of VR to provide personalized assessment and rehabilitation that optimizes motor learning in both the clinic and home environments and adapts to changes in individuals over time. Design of such systems will require collaboration between all stakeholders to maximize useability, engagement, safety and effectiveness.This Review examines the rationale for the use of virtual reality in research and rehabilitation of people with Parkinson disease. The authors provide a critical appraisal of the current state of the art, make recommendations for future research and outline clinical implications.
Effect of home-based virtual reality training and telerehabilitation on balance in individuals with Parkinson disease, multiple sclerosis, and stroke: a systematic review and meta-analysis
ObjectiveIn the last decade, there is a growing interest in the use of virtual reality for rehabilitation in clinical and home settings. The aim of this systematic review is to do a summary of the current evidence on the effect of home-based virtual reality training and telerehabilitation on postural balance in individuals with central neurological disorders.MethodsLiterature was searched in PubMed, Web of Science, PEDro, ScienceDirect, and MEDLINE. Randomized controlled trials (RCTs) evaluating the effect of home-based virtual reality (VR) training and telerehabilitation (TR) on postural balance in patients with Parkinson's disease, Multiple sclerosis or stroke. Studies were imported to EndNote and Excel to perform two screening phases by four reviewers. Risk of bias was assessed using PEDro scale and Cochrane assessment tool for risk of bias. Synthesis of the data on comparative outcomes was performed using RevMan software.ResultsSeven RCTs were included, with all three pathologies represented. VR and TR consisted of a training device (e.g., Nintendo Wii or Xbox 360) and a monitoring device (e.g., Skype or Microsoft Kinect). Five studies used the Berg Balance Scale (BBS) for measuring postural balance. Across studies, there was an improvement in BBS scores over time in both experimental and control groups, and the effect remained at follow-up for both groups. However, there was no significant difference between groups post-intervention (MD = 0.74, p = 0.45).ConclusionHome-based VR and TR can be used as prolongation to conventional therapy.
Effect of rhythmic auditory cueing on parkinsonian gait: A systematic review and meta-analysis
The use of rhythmic auditory cueing to enhance gait performance in parkinsonian patients’ is an emerging area of interest. Different theories and underlying neurophysiological mechanisms have been suggested for ascertaining the enhancement in motor performance. However, a consensus as to its effects based on characteristics of effective stimuli, and training dosage is still not reached. A systematic review and meta-analysis was carried out to analyze the effects of different auditory feedbacks on gait and postural performance in patients affected by Parkinson’s disease. Systematic identification of published literature was performed adhering to PRISMA guidelines, from inception until May 2017, on online databases; Web of science, PEDro, EBSCO, MEDLINE, Cochrane, EMBASE and PROQUEST. Of 4204 records, 50 studies, involving 1892 participants met our inclusion criteria. The analysis revealed an overall positive effect on gait velocity, stride length, and a negative effect on cadence with application of auditory cueing. Neurophysiological mechanisms, training dosage, effects of higher information processing constraints, and use of cueing as an adjunct with medications are thoroughly discussed. This present review bridges the gaps in literature by suggesting application of rhythmic auditory cueing in conventional rehabilitation approaches to enhance motor performance and quality of life in the parkinsonian community.