Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Reading LevelReading Level
-
Content TypeContent Type
-
YearFrom:-To:
-
More FiltersMore FiltersItem TypeIs Full-Text AvailableSubjectPublisherSourceDonorLanguagePlace of PublicationContributorsLocation
Done
Filters
Reset
2,225
result(s) for
"Parkinsonian disorders"
Sort by:
Handbook of atypical parkinsonism
\"Improved diagnostic sophistication is increasingly enabling neurologists to differentiate between Parkinson's disease and other atypical parkinsonism (AP), such as multiple system atrophy, progressive supranuclear palsy, corticobasal degeneration, and dementia with Lewy bodies. The Handbook of Atypical Parkinsonism is a comprehensive survey of all diseases of this category, providing an authoritative guide to the recognition, diagnosis and management of these disorders. Each chapter follows a common structure, commencing with the full basic science of the disorder under consideration, followed by descriptions of the clinical picture and differential diagnosis. Subsequent chapters discuss current and future therapeutic approaches to these difficult conditions. Written and edited by leading practitioners in the field, clinicians in neurology and other specialties will find this book essential to the understanding and diagnosis of this complex group of disorders\"--Provided by publisher.
Brain tyrosinase overexpression implicates age-dependent neuromelanin production in Parkinson’s disease pathogenesis
2019
In Parkinson’s disease (PD) there is a selective degeneration of neuromelanin-containing neurons, especially substantia nigra dopaminergic neurons. In humans, neuromelanin accumulates with age, the latter being the main risk factor for PD. The contribution of neuromelanin to PD pathogenesis remains unknown because, unlike humans, common laboratory animals lack neuromelanin. Synthesis of peripheral melanins is mediated by tyrosinase, an enzyme also present at low levels in the brain. Here we report that overexpression of human tyrosinase in rat substantia nigra results in age-dependent production of human-like neuromelanin within nigral dopaminergic neurons, up to levels reached in elderly humans. In these animals, intracellular neuromelanin accumulation above a specific threshold is associated to an age-dependent PD phenotype, including hypokinesia, Lewy body-like formation and nigrostriatal neurodegeneration. Enhancing lysosomal proteostasis reduces intracellular neuromelanin and prevents neurodegeneration in tyrosinase-overexpressing animals. Our results suggest that intracellular neuromelanin levels may set the threshold for the initiation of PD.
It is unclear if neuromelanin plays a role in Parkinson’s disease pathogenesis since common laboratory animals lack this pigment. Authors show here that overexpression of human tyrosinase in the substantia nigra of rats resulted in an age-dependent production of human-like neuromelanin within nigral dopaminergic neurons and is associated with a Parkinson’s disease phenotype when allowed to accumulate above a specific threshold.
Journal Article
Disruption of mitochondrial complex I induces progressive parkinsonism
2021
Loss of functional mitochondrial complex I (MCI) in the dopaminergic neurons of the substantia nigra is a hallmark of Parkinson’s disease
1
. Yet, whether this change contributes to Parkinson’s disease pathogenesis is unclear
2
. Here we used intersectional genetics to disrupt the function of MCI in mouse dopaminergic neurons. Disruption of MCI induced a Warburg-like shift in metabolism that enabled neuronal survival, but triggered a progressive loss of the dopaminergic phenotype that was first evident in nigrostriatal axons. This axonal deficit was accompanied by motor learning and fine motor deficits, but not by clear levodopa-responsive parkinsonism—which emerged only after the later loss of dopamine release in the substantia nigra. Thus, MCI dysfunction alone is sufficient to cause progressive, human-like parkinsonism in which the loss of nigral dopamine release makes a critical contribution to motor dysfunction, contrary to the current Parkinson’s disease paradigm
3
,
4
.
Dysfunction of mitochondrial complex I in mice is sufficient to cause progressive parkinsonism in which the loss of nigral dopamine release critically contributes to motor dysfunction.
Journal Article
Efficacy of rasagiline in patients with the parkinsonian variant of multiple system atrophy: a randomised, placebo-controlled trial
2015
Multiple system atrophy is a complex neurodegenerative disorder for which no effective treatment exists. We aimed to assess the effect of rasagiline on symptoms and progression of the parkinsonian variant of multiple system atrophy.
We did this randomised, double-blind, placebo-controlled trial between Dec 15, 2009, and Oct 20, 2011, at 40 academic sites specialised in the care of patients with multiple systemic atrophy across 12 countries. Eligible participants aged 30 years or older with possible or probable parkinsonian variant multiple system atrophy were randomly assigned (1:1), via computer-generated block randomisation (block size of four), to receive either rasagiline 1 mg per day or placebo. Randomisation was stratified by study centre. The investigators, study funder, and personnel involved in patient assessment, monitoring, analysis and data management were masked to group assignment. The primary endpoint was change from baseline to study end in total Unified Multiple System Atrophy Rating Scale (UMSARS) score (parts I and II). Analysis was by modified intention to treat. The trial is registered with ClinicalTrials.gov, number NCT00977665.
We randomly assigned 174 participants to the rasagiline group (n=84) or the placebo group (n=90); 21 (25%) patients in the rasagiline group and 15 (17%) in the placebo group withdrew from the study early. At week 48, patients in the rasagiline group had progressed by an adjusted mean of 7·2 (SE 1·2) total UMSARS units versus 7·8 (1·1) units in those in the placebo group. This treatment difference of −0·60 (95% CI −3·68 to 2·47; p=0·70) was not significant. 68 (81%) patients in the rasagiline group and 67 (74%) patients in the placebo group reported adverse events, and we recorded serious adverse events in 29 (35%) versus 23 (26%) patients. The most common adverse events in the rasagiline group were dizziness (n=10 [12%]), peripheral oedema (n=9 [11%]), urinary tract infections (n=9 [11%]), and orthostatic hypotension (n=8 [10%]).
In this population of patients with the parkinsonian variant of multiple system atrophy, treatment with rasagiline 1 mg per day did not show a significant benefit as assessed by UMSARS. The study confirms the sensitivity of clinical outcomes for multiple system atrophy to detect clinically significant decline, even in individuals with early disease.
Teva Pharmaceutical Industries and H Lundbeck A/S.
Journal Article
EANM practice guideline/SNMMI procedure standard for dopaminergic imaging in Parkinsonian syndromes 1.0
by
Esposito, Giuseppe
,
Barthel Henryk
,
Kuo, Phillip
in
Basal ganglia
,
Central nervous system diseases
,
Clinical practice guidelines
2020
PurposeThis joint practice guideline or procedure standard was developed collaboratively by the European Association of Nuclear Medicine (EANM) and the Society of Nuclear Medicine and Molecular Imaging (SNMMI). The goal of this guideline is to assist nuclear medicine practitioners in recommending, performing, interpreting, and reporting the results of dopaminergic imaging in parkinsonian syndromes.MethodsCurrently nuclear medicine investigations can assess both presynaptic and postsynaptic function of dopaminergic synapses. To date both EANM and SNMMI have published procedural guidelines for dopamine transporter imaging with single photon emission computed tomography (SPECT) (in 2009 and 2011, respectively). An EANM guideline for D2 SPECT imaging is also available (2009). Since the publication of these previous guidelines, new lines of evidence have been made available on semiquantification, harmonization, comparison with normal datasets, and longitudinal analyses of dopamine transporter imaging with SPECT. Similarly, details on acquisition protocols and simplified quantification methods are now available for dopamine transporter imaging with PET, including recently developed fluorinated tracers. Finally, [18F]fluorodopa PET is now used in some centers for the differential diagnosis of parkinsonism, although procedural guidelines aiming to define standard procedures for [18F]fluorodopa imaging in this setting are still lacking.ConclusionAll these emerging issues are addressed in the present procedural guidelines for dopaminergic imaging in parkinsonian syndromes.
Journal Article
Serotonergic pathology and disease burden in the premotor and motor phase of A53T α-synuclein parkinsonism: a cross-sectional study
by
Stefanis, Leonidas
,
Picillo, Marina
,
Gunn, Roger N
in
Adult
,
Aged
,
alpha-Synuclein - genetics
2019
Because of the highly penetrant gene mutation and clinical features consistent with idiopathic Parkinson's disease, carriers of the autosomal dominant Ala53Thr (A53T; 209G→A) point mutation in the α-synuclein (SNCA) gene are an ideal population to study the premotor phase and evolution of Parkinson's pathology. Given the known neurochemical changes in the serotonergic system and their association with symptoms of Parkinson's disease, we hypothesised that carriers of the A53T SNCA mutation might show abnormalities in the serotonergic neurotransmitter system before the diagnosis of Parkinson's disease, and that this pathology might be associated with measures of Parkinson's burden.
In this cross-sectional study, we recruited carriers of the A53T SNCA mutation from specialist Movement Disorders clinics in Athens, Greece, and Salerno, Italy, and a cohort of healthy controls with no personal or family history of neurological or psychiatric disorders from London, UK (recruited via public advertisement) who were age matched to the A53T SNCA carriers. We also recruited one cohort of patients with idiopathic Parkinson's disease (cohort 1) from Movement Disorders clinics in London, UK, and retrieved data on a second cohort of such patients (cohort 2; n=40) who had been scanned with a different scanner. 7-day continuous recording of motor function was used to determine the Parkinson's disease status of the A53T carriers. To assess whether serotonergic abnormalities were present, we used [11C]DASB PET non-displaceable binding to quantify serotonin transporter density. We constructed brain topographic maps reflecting Braak stages 1–6 and used these as seed maps to calculate [11C]DASB non-displaceable binding potential in our cohort of A53T SNCA carriers. Additionally, all participants underwent a battery of clinical assessments to determine motor and non-motor symptoms and cognitive status, and [123I]FP-CIT single-photon emission CT (SPECT) to assess striatal dopamine transporter binding and MRI for volumetric analyses to assess whether pathology is associated with measures of Parkinson's disease burden.
Between Sept 1, 2016, and Sept 30, 2018, we recruited 14 A53T SNCA carriers, 25 healthy controls, and 25 patients with idiopathic Parkinson's disease. Seven (50%) of 14 A53T SCNA carriers were confirmed to have motor symptoms and confirmed to have Parkinson's disease, and the absence of motor symptoms was confirmed in seven (50%) A53T SCNA carriers (ie, premotor), in whom [123I]FP-CIT SPECT confirmed the absence of striatal dopaminergic deficits. Compared with healthy controls, premotor A53T SNCA carriers showed loss of [11C]DASB non-displaceable binding potential in the ventral (p<0·0001) and dorsal (p=0·0002) raphe nuclei, caudate (p=0·00015), putamen (p=0·036), thalamus (p=0·00074), hypothalamus (p<0·0001), amygdala (p=0·0041), and brainstem (p=0·046); and in A53T SNCA carriers with Parkinson's disease this loss was extended to the hippocampus (p=0·0051), anterior (p=0·022) and posterior cingulate (p=0·036), insula (p=0·0051), frontal (p=0·0016), parietal (p=0·019), temporal (p<0·0001), and occipital (p=0·0053) cortices. A53T SNCA carriers with Parkinson's disease showed a loss of striatal [123I]FP-CIT-specific binding ratio compared with healthy controls (p<0·0001). Premotor A53T SNCA carriers had loss of [11C]DASB non-displaceable binding potential in brain areas corresponding to Braak stages 1–3, whereas [11C]DASB non-displaceable binding potential was largely preserved in areas corresponding to Braak stages 4–6. Except for one participant who was diagnosed with Parkinson's disease in the past year, all A53T SNCA carriers with Parkinson's disease had decreases in [11C]DASB non-displaceable binding potential in brain areas corresponding to Braak stages 1–6. Decreases in [11C]DASB non-displaceable binding potential in the brainstem were associated with increased Movement Disorder Score-Unified Parkinson's Disease Rating Scale total scores in all A53T SNCA carriers (r −0·66, 95% CI −0·88 to −0·20; p=0·0099), idiopathic Parkinson's disease cohort 1 (r −0·66, −0·84 to −0·36; p=0·00031), and idiopathic Parkinson's disease cohort 2 (r −0·71, −0·84 to −0·52; p<0·0001).
The presence of serotonergic pathology in premotor A53T SNCA carriers preceded development of dopaminergic pathology and motor symptoms and was associated with disease burden, highlighting the potential early role of serotonergic pathology in the progression of Parkinson's disease. Our findings provide evidence that molecular imaging of serotonin transporters could be used to visualise premotor pathology of Parkinson's disease in vivo. Future work might establish whether serotonin transporter imaging is suitable as an adjunctive tool for screening and monitoring progression for individuals at risk or patients with Parkinson's disease to complement dopaminergic imaging, or as a marker of Parkinson's burden in clinical trials.
Lily Safra Hope Foundation and National Institute for Health Research (NIHR) Biomedical Research Centre at King's College London.
Journal Article
FTH1 Inhibits Ferroptosis Through Ferritinophagy in the 6-OHDA Model of Parkinson's Disease
2020
Parkinson's disease (PD) is a neurodegenerative disorder characterized by degeneration of dopaminergic neurons associated with dysregulation of iron homeostasis in the brain. Ferroptosis is an iron-dependent cell death process that serves as a significant regulatory mechanism in PD. However, its underlying mechanisms are not yet fully understood. By performing RNA sequencing analysis, we found that the main iron storage protein ferritin heavy chain 1 (FTH1) is differentially expressed in the rat 6-hydroyxdopamine (6-OHDA) model of PD compared with control rats. Our present work demonstrates that FTH1 is involved in iron accumulation and the ferroptosis pathway in this model. Knockdown of FTH1 in PC-12 cells significantly inhibited cell viability and caused mitochondrial dysfunction. Moreover, FTH1 was found to be involved in ferritinophagy, a selective form of autophagy involving the degradation of ferritin by ferroptosis. Overexpression of FTH1 in PC-12 cells impaired ferritinophagy and downregulated microtubule-associated protein light chain 3 and nuclear receptor coactivator 4 expression, ultimately suppressing cell death induced by ferroptosis. Consistent with these findings, the ferritinophagy inhibitors chloroquine and bafilomycin A1 inhibited ferritin degradation and ferroptosis in 6-OHDA-treated PC-12 cells. This entire process was mediated by the cyclic regulation of FTH1 and ferritinophagy. Taken together, these results suggest that FTH1 links ferritinophagy and ferroptosis in the 6-OHDA model of PD, and provide a new perspective and potential for a pharmacological target in this disease.
Journal Article
The link between the GBA gene and parkinsonism
2012
Mutations in the glucocerebrosidase (GBA) gene, which encodes the lysosomal enzyme that is deficient in Gaucher's disease, are important and common risk factors for Parkinson's disease and related disorders. This association was first recognised in the clinic, where parkinsonism was noted, albeit rarely, in patients with Gaucher's disease and more frequently in relatives who were obligate carriers. Subsequently, findings from large studies showed that patients with Parkinson's disease and associated Lewy body disorders had an increased frequency of GBA mutations when compared with control individuals. Patients with GBA-associated parkinsonism exhibit varying parkinsonian phenotypes but tend to have an earlier age of onset and more associated cognitive changes than patients with parkinsonism without GBA mutations. Hypotheses proposed to explain this association include a gain-of-function due to mutations in glucocerebrosidase that promotes α-synuclein aggregation; substrate accumulation due to enzymatic loss-of-function, which affects α-synuclein processing and clearance; and a bidirectional feedback loop. Identification of the pathological mechanisms underlying GBA-associated parkinsonism will improve our understanding of the genetics, pathophysiology, and treatment for both rare and common neurological diseases.
Journal Article
Neurodegeneration and Inflammation—An Interesting Interplay in Parkinson’s Disease
by
Sokratous, Maria
,
Dardiotis, Efthimios
,
Hadjigeorgiou, Georgios M.
in
alpha-Synuclein - immunology
,
alpha-Synuclein - physiology
,
Animals
2020
Parkinson’s disease (PD) is a neurodegenerative disorder, caused by, so far, unknown pathogenetic mechanisms. There is no doubt that pro-inflammatory immune-mediated mechanisms are pivotal to the pathogenicity and progression of the disease. In this review, we highlight the binary role of microglia activation in the pathophysiology of the disorder, both neuroprotective and neuromodulatory. We present how the expression of several cytokines implicated in dopaminergic neurons (DA) degeneration could be used as biomarkers for PD. Viral infections have been studied and correlated to the disease progression, usually operating as trigger factors for the inflammatory process. The gut–brain axis and the possible contribution of the peripheral bowel inflammation to neuronal death, mainly dopaminergic neurons, seems to be a main contributor of brain neuroinflammation. The role of the immune system has also been analyzed implicating a-synuclein in the activation of innate and adaptive immunity. We also discuss therapeutic approaches concerning PD and neuroinflammation, which have been studied in experimental and in vitro models and data stemming from epidemiological studies.
Journal Article
Freezing of gait: moving forward on a mysterious clinical phenomenon
by
Bloem, Bastiaan R
,
Giladi, Nir
,
Horak, Fay B
in
Animals
,
Basal ganglia
,
Basal Ganglia - pathology
2011
Freezing of gait (FoG) is a unique and disabling clinical phenomenon characterised by brief episodes of inability to step or by extremely short steps that typically occur on initiating gait or on turning while walking. Patients with FoG, which is a feature of parkinsonian syndromes, show variability in gait metrics between FoG episodes and a substantial reduction in step length with frequent trembling of the legs during FoG episodes. Physiological, functional imaging, and clinical–pathological studies point to disturbances in frontal cortical regions, the basal ganglia, and the midbrain locomotor region as the probable origins of FoG. Medications, deep brain stimulation, and rehabilitation techniques can alleviate symptoms of FoG in some patients, but these treatments lack efficacy in patients with advanced FoG. A better understanding of the phenomenon is needed to aid the development of effective therapeutic strategies.
Journal Article