Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Series Title
      Series Title
      Clear All
      Series Title
  • Reading Level
      Reading Level
      Clear All
      Reading Level
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Content Type
    • Item Type
    • Is Full-Text Available
    • Subject
    • Country Of Publication
    • Publisher
    • Source
    • Target Audience
    • Donor
    • Language
    • Place of Publication
    • Contributors
    • Location
79,620 result(s) for "Partial Differential Equations"
Sort by:
An introduction to partial differential equations
\"This book is an introduction to methods for solving partial differential equations (PDEs). After the introduction of the main four PDEs that could be considered the cornerstone of Applied Mathematics, the reader is introduced to a variety of PDEs that come from a variety of fields in the Natural Sciences and Engineering and is a springboard into this wonderful subject. The chapters include the following topics: First-order PDEs, Second-order PDEs, Fourier Series, Separation of Variables, and the Fourier Transform. The reader is guided through these chapters where techniques for solving first- and second-order PDEs are introduced. Each chapter ends with a series of exercises illustrating the material presented in each chapter. The book can be used as a textbook for any introductory course in PDEs typically found in both science and engineering programs and has been used at the University of Central Arkansas for over ten years.\"--Abstract (page vi).
Asymptotic Spreading for General Heterogeneous Fisher-KPP Type Equations
In this monograph, we review the theory and establish new and general results regarding spreading properties for heterogeneous reaction-diffusion equations: The characterizations of these sets involve two new notions of generalized principal eigenvalues for linear parabolic operators in unbounded domains. In particular, it allows us to show that
Tunneling estimates and approximate controllability for hypoelliptic equations
This memoir is concerned with quantitative unique continuation estimates for equations involving a “sum of squares” operator The first result is the tunneling estimate The main result is a stability estimate for solutions to the hypoelliptic wave equation We then prove the approximate controllability of the hypoelliptic heat equation We also explain how the analyticity assumption can be relaxed, and a boundary Most results turn out to be optimal on a family of Grushin-type operators. The main proof relies on the general strategy to produce quantitative unique continuation estimates, developed by the authors in Laurent-Léautaud (2019).
Numerical partial differential equations in finance explained : an introduction to computational finance
This book provides a first, basic introduction into the valuation of financial options via the numerical solution of partial differential equations (PDEs). It provides readers with an easily accessible text explaining main concepts, models, methods and results that arise in this approach. In keeping with the series style, emphasis is placed on intuition as opposed to full rigor, and a relatively basic understanding of mathematics is sufficient. The book provides a wealth of examples, and ample numerical experiments are given to illustrate the theory. The main focus is on one-dimensional financial PDEs, notably the Black-Scholes equation.
On the Stability of Type I Blow Up For the Energy Super Critical Heat Equation
The authors consider the energy super critical semilinear heat equation \\partial _{t}u=\\Delta u+u^{p}, x\\in \\mathbb{R}^3, p>5. The authors first revisit the construction of radially symmetric self similar solutions performed through an ode approach and propose a bifurcation type argument which allows for a sharp control of the spectrum of the corresponding linearized operator in suitable weighted spaces. They then show how the sole knowledge of this spectral gap in weighted spaces implies the finite codimensional nonradial stability of these solutions for smooth well localized initial data using energy bounds. The whole scheme draws a route map for the derivation of the existence and stability of self-similar blow up in nonradial energy super critical settings.
Advanced numerical methods with Matlab 2 : resolution of nonlinear, differential and partial differential equations
The purpose of this book is to introduce and study numerical methods basic and advanced ones for scientific computing. This last refers to the implementation of appropriate approaches to the treatment of a scientific problem arising from physics (meteorology, pollution, etc.) or of engineering (mechanics of structures, mechanics of fluids, treatment signal, etc.). Each chapter of this book recalls the essence of the different methods resolution and presents several applications in the field of engineering as well as programs developed under Matlab software.