Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Series TitleSeries Title
-
Reading LevelReading Level
-
YearFrom:-To:
-
More FiltersMore FiltersContent TypeItem TypeIs Full-Text AvailableSubjectCountry Of PublicationPublisherSourceTarget AudienceDonorLanguagePlace of PublicationContributorsLocation
Done
Filters
Reset
79,620
result(s) for
"Partial Differential Equations"
Sort by:
An introduction to partial differential equations
\"This book is an introduction to methods for solving partial differential equations (PDEs). After the introduction of the main four PDEs that could be considered the cornerstone of Applied Mathematics, the reader is introduced to a variety of PDEs that come from a variety of fields in the Natural Sciences and Engineering and is a springboard into this wonderful subject. The chapters include the following topics: First-order PDEs, Second-order PDEs, Fourier Series, Separation of Variables, and the Fourier Transform. The reader is guided through these chapters where techniques for solving first- and second-order PDEs are introduced. Each chapter ends with a series of exercises illustrating the material presented in each chapter. The book can be used as a textbook for any introductory course in PDEs typically found in both science and engineering programs and has been used at the University of Central Arkansas for over ten years.\"--Abstract (page vi).
Asymptotic Spreading for General Heterogeneous Fisher-KPP Type Equations
by
Berestycki, Henri
,
Nadin, Grégoire
in
Asymptotic theory
,
Differential equations, Parabolic
,
Reaction-diffusion equations
2022
In this monograph, we review the theory and establish new and general results regarding spreading properties for heterogeneous
reaction-diffusion equations:
The characterizations of these sets involve two new notions of generalized principal eigenvalues
for linear parabolic operators in unbounded domains. In particular, it allows us to show that
Tunneling estimates and approximate controllability for hypoelliptic equations
by
Laurent, Camille
,
Léautaud, Matthieu
in
Differential equations, Hypoelliptic
,
Partial differential equations -- Close-to-elliptic equations and systems -- Hypoelliptic equations. msc
,
Partial differential equations -- Hyperbolic equations and systems -- Wave equation. msc
2022
This memoir is concerned with quantitative unique continuation estimates for equations involving a “sum of squares” operator
The first result is the tunneling estimate
The main
result is a stability estimate for solutions to the hypoelliptic wave equation
We then prove the approximate controllability of the
hypoelliptic heat equation
We also explain how the analyticity
assumption can be relaxed, and a boundary
Most results turn out to be optimal on a family of Grushin-type operators.
The main proof relies on the
general strategy to produce quantitative unique continuation estimates, developed by the authors in Laurent-Léautaud (2019).
Numerical partial differential equations in finance explained : an introduction to computational finance
This book provides a first, basic introduction into the valuation of financial options via the numerical solution of partial differential equations (PDEs). It provides readers with an easily accessible text explaining main concepts, models, methods and results that arise in this approach. In keeping with the series style, emphasis is placed on intuition as opposed to full rigor, and a relatively basic understanding of mathematics is sufficient. The book provides a wealth of examples, and ample numerical experiments are given to illustrate the theory. The main focus is on one-dimensional financial PDEs, notably the Black-Scholes equation.
On the Stability of Type I Blow Up For the Energy Super Critical Heat Equation
2019
The authors consider the energy super critical semilinear heat equation \\partial _{t}u=\\Delta u+u^{p}, x\\in \\mathbb{R}^3, p>5. The authors first revisit the construction of radially symmetric self similar solutions performed through an ode approach and propose a bifurcation type argument which allows for a sharp control of the spectrum of the corresponding linearized operator in suitable weighted spaces. They then show how the sole knowledge of this spectral gap in weighted spaces implies the finite codimensional nonradial stability of these solutions for smooth well localized initial data using energy bounds. The whole scheme draws a route map for the derivation of the existence and stability of self-similar blow up in nonradial energy super critical settings.
The Yang-Mills heat equation with finite action in three dimensions
by
Gross, Leonard
in
Gauge fields (Physics)
,
Global analysis, analysis on manifolds -- Partial differential equations on manifolds; differential operators -- Heat and other parabolic equation methods. msc
,
Heat equation
2022
The existence and uniqueness of solutions to the Yang-Mills heat equation is proven over
Advanced numerical methods with Matlab 2 : resolution of nonlinear, differential and partial differential equations
The purpose of this book is to introduce and study numerical methods basic and advanced ones for scientific computing. This last refers to the implementation of appropriate approaches to the treatment of a scientific problem arising from physics (meteorology, pollution, etc.) or of engineering (mechanics of structures, mechanics of fluids, treatment signal, etc.). Each chapter of this book recalls the essence of the different methods resolution and presents several applications in the field of engineering as well as programs developed under Matlab software.
Construction of Blowup Solutions for the Complex Ginzburg-Landau Equation with Critical Parameters
by
Zaag, Hatem
,
Nouaili, Nejla
,
Duong, Giao Ky
in
Blowing up (Algebraic geometry)
,
Reaction-diffusion equations
2023
We construct a solution for the Complex Ginzburg-Landau (CGL) equation in a general critical case, which blows up in finite time