Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
40 result(s) for "Partial differential equations. msc"
Sort by:
Tunneling estimates and approximate controllability for hypoelliptic equations
This memoir is concerned with quantitative unique continuation estimates for equations involving a “sum of squares” operator The first result is the tunneling estimate The main result is a stability estimate for solutions to the hypoelliptic wave equation We then prove the approximate controllability of the hypoelliptic heat equation We also explain how the analyticity assumption can be relaxed, and a boundary Most results turn out to be optimal on a family of Grushin-type operators. The main proof relies on the general strategy to produce quantitative unique continuation estimates, developed by the authors in Laurent-Léautaud (2019).
Asymptotic Spreading for General Heterogeneous Fisher-KPP Type Equations
In this monograph, we review the theory and establish new and general results regarding spreading properties for heterogeneous reaction-diffusion equations: The characterizations of these sets involve two new notions of generalized principal eigenvalues for linear parabolic operators in unbounded domains. In particular, it allows us to show that
Brownian regularity for the Airy line ensemble, and multi-polymer watermelons in Brownian last passage percolation
The Airy line ensemble is a positive-integer indexed system of random continuous curves whose finite dimensional distributions are given by the multi-line Airy process. It is a natural object in the KPZ universality class: for example, its highest curve, the Airy In this paper, we employ the Brownian Gibbs property to make a close comparison between the Airy line ensemble’s curves after affine shift and Brownian bridge, proving the finiteness of a superpolynomially growing moment bound on Radon-Nikodym derivatives. We also determine the value of a natural exponent describing in Brownian last passage percolation the decay in probability for the existence of several near geodesics that are disjoint except for their common endpoints, where the notion of ‘near’ refers to a small deficit in scaled geodesic energy, with the parameter specifying this nearness tending to zero. To prove both results, we introduce a technique that may be useful elsewhere for finding upper bounds on probabilities of events concerning random systems of curves enjoying the Brownian Gibbs property. Several results in this article play a fundamental role in a further study of Brownian last passage percolation in three companion papers (Hammond 2017a,b,c), in which geodesic coalescence and geodesic energy profiles are investigated in scaled coordinates.
Recent trends in formal and analytic solutions of diff. equations : Virtual Conference Formal and Analytic Solutions of Diff. Equations, June 28-July 2, 2021, University of Alcalá, Alcalá de Henares, Spain
This volume contains the proceedings of the conference on Formal and Analytic Solutions of Diff. Equations, held from June 28-July 2, 2021, and hosted by University of Alcala, Alcala de Henares, Spain. The manuscripts cover recent advances in the study of formal and analytic solutions of different kinds of equations such as ordinary differential equations, difference equations, $q$-difference equations, partial differential equations, moment differential equations, etc. Also discussed are related topics such as summability of formal solutions and the asymptotic study of their solutions. The volume is intended not only for researchers in this field of knowledge but also for students who aim to acquire new techniques and learn recent results.
Elliptic Theory for Sets with Higher Co-dimensional Boundaries
Many geometric and analytic properties of sets hinge on the properties of elliptic measure, notoriously missing for sets of higher co-dimension. The aim of this manuscript is to develop a version of elliptic theory, associated to a linear PDE, which ultimately yields a notion analogous to that of the harmonic measure, for sets of codimension higher than 1. To this end, we turn to degenerate elliptic equations. Let In another article to appear, we will prove that when