Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
6,323
result(s) for
"Particle in cell technique"
Sort by:
Ultra-short pulse laser acceleration of protons to 80 MeV from cryogenic hydrogen jets tailored to near-critical density
by
Schoenwaelder, Christopher
,
Bussmann, Michael
,
Fiuza, Frederico
in
639/766/1960/1135
,
639/766/1960/1137
,
Acceleration
2023
Laser plasma-based particle accelerators attract great interest in fields where conventional accelerators reach limits based on size, cost or beam parameters. Despite the fact that particle in cell simulations have predicted several advantageous ion acceleration schemes, laser accelerators have not yet reached their full potential in producing simultaneous high-radiation doses at high particle energies. The most stringent limitation is the lack of a suitable high-repetition rate target that also provides a high degree of control of the plasma conditions required to access these advanced regimes. Here, we demonstrate that the interaction of petawatt-class laser pulses with a pre-formed micrometer-sized cryogenic hydrogen jet plasma overcomes these limitations enabling tailored density scans from the solid to the underdense regime. Our proof-of-concept experiment demonstrates that the near-critical plasma density profile produces proton energies of up to 80 MeV. Based on hydrodynamic and three-dimensional particle in cell simulations, transition between different acceleration schemes are shown, suggesting enhanced proton acceleration at the relativistic transparency front for the optimal case.
Laser-produced plasma can be used for particle acceleration in different schemes. Here the authors demonstrate proton acceleration from the intense ultrashort laser pulse interaction with micron-sized cryogenic hydrogen jet.
Journal Article
Polarized electron-beam acceleration driven by vortex laser pulses
by
Hützen, Anna
,
Wu, Yitong
,
Geng, Xuesong
in
Depolarization
,
Electron acceleration
,
Electron beams
2019
We propose a new approach based on an all-optical set-up for generating relativistic polarized electron beams via vortex Laguerre-Gaussian (LG) laser-driven wakefield acceleration. Using a pre-polarized gas target, we find that the topology of the vortex wakefield resolves the depolarization issue of the injected electrons. In full three-dimensional particle-in-cell simulations, incorporating the spin dynamics via the Thomas-Bargmann Michel Telegdi equation, the LG laser preserves the electron spin polarization by more than 80% while assuring efficient electron injection. The method releases the limit on beam flux for polarized electron acceleration and promises more than an order of magnitude boost in peak flux, as compared to Gaussian beams. These results suggest a promising table-top method to produce energetic polarized electron beams.
Journal Article
Towards the optimisation of direct laser acceleration
by
Arefiev, A V
,
Froula, D H
,
Gong, Z
in
70 PLASMA PHYSICS AND FUSION TECHNOLOGY
,
Charge density
,
electron acceleration
2021
Experimental measurements using the OMEGA EP laser facility demonstrated direct laser acceleration (DLA) of electron beams to (505 ± 75) MeV with (140 ± 30) nC of charge from a low-density plasma target using a 400 J, picosecond duration pulse. Similar trends of electron energy with target density are also observed in self-consistent two-dimensional particle-in-cell simulations. The intensity of the laser pulse is sufficiently large that the electrons are rapidly expelled along the laser pulse propagation axis to form a channel. The dominant acceleration mechanism is confirmed to be DLA and the effect of quasi-static channel fields on energetic electron dynamics is examined. A strong channel magnetic field, self-generated by the accelerated electrons, is found to play a comparable role to the transverse electric channel field in defining the boundary of electron motion.
Journal Article
GEMPIC: geometric electromagnetic particle-in-cell methods
by
Kormann, Katharina
,
Sonnendrücker, Eric
,
Kraus, Michael
in
Antisymmetry
,
Atoms & subatomic particles
,
Brackets
2017
We present a novel framework for finite element particle-in-cell methods based on the discretization of the underlying Hamiltonian structure of the Vlasov–Maxwell system. We derive a semi-discrete Poisson bracket, which retains the defining properties of a bracket, anti-symmetry and the Jacobi identity, as well as conservation of its Casimir invariants, implying that the semi-discrete system is still a Hamiltonian system. In order to obtain a fully discrete Poisson integrator, the semi-discrete bracket is used in conjunction with Hamiltonian splitting methods for integration in time. Techniques from finite element exterior calculus ensure conservation of the divergence of the magnetic field and Gauss’ law as well as stability of the field solver. The resulting methods are gauge invariant, feature exact charge conservation and show excellent long-time energy and momentum behaviour. Due to the generality of our framework, these conservation properties are guaranteed independently of a particular choice of the finite element basis, as long as the corresponding finite element spaces satisfy certain compatibility conditions.
Journal Article
Dayside Transient Phenomena and Their Impact on the Magnetosphere and Ionosphere
by
Le, Guan
,
Zhang, Hui
,
Han, Desheng
in
Aerospace Technology and Astronautics
,
Anomalies
,
Astrophysics and Astroparticles
2022
Dayside transients, such as hot flow anomalies, foreshock bubbles, magnetosheath jets, flux transfer events, and surface waves, are frequently observed upstream from the bow shock, in the magnetosheath, and at the magnetopause. They play a significant role in the solar wind-magnetosphere-ionosphere coupling. Foreshock transient phenomena, associated with variations in the solar wind dynamic pressure, deform the magnetopause, and in turn generates field-aligned currents (FACs) connected to the auroral ionosphere. Solar wind dynamic pressure variations and transient phenomena at the dayside magnetopause drive magnetospheric ultra low frequency (ULF) waves, which can play an important role in the dynamics of Earth’s radiation belts. These transient phenomena and their geoeffects have been investigated using coordinated in-situ spacecraft observations, spacecraft-borne imagers, ground-based observations, and numerical simulations. Cluster, THEMIS, Geotail, and MMS multi-mission observations allow us to track the motion and time evolution of transient phenomena at different spatial and temporal scales in detail, whereas ground-based experiments can observe the ionospheric projections of transient magnetopause phenomena such as waves on the magnetopause driven by hot flow anomalies or flux transfer events produced by bursty reconnection across their full longitudinal and latitudinal extent. Magnetohydrodynamics (MHD), hybrid, and particle-in-cell (PIC) simulations are powerful tools to simulate the dayside transient phenomena. This paper provides a comprehensive review of the present understanding of dayside transient phenomena at Earth and other planets, their geoeffects, and outstanding questions.
Journal Article
Cascaded generation of isolated sub-10 attosecond half-cycle pulses
by
Gong, Zheng
,
Chen, Jia erh
,
Ma, Wenjun
in
Attosecond pulses
,
Electric fields
,
Femtosecond pulses
2021
Sub-10 attosecond pulses (APs) with half-cycle electric fields provide exceptional options to detect and manipulate electrons in the atomic timescale. However, the availability of such pulses is still challenging. Here, we propose a method to generate isolated sub-10 attosecond half-cycle pulses based on a cascade process naturally happening in plasma. A backward AP is first generated by shooting a moderate overdense plasma with a one-cycle femtosecond pulse. After that, an electron sheet with the thickness of several nanometers is formed and accelerated forward by the electrostatic field. Then this electron sheet goes through unipolar perturbations driven by the tail of the first-stage AP instead of the initial laser pulse. As a result, a half-cycle sub-10 AP is cascadedly produced in the transmission direction. Two-dimensional particle-in-cell simulations indicate that an isolated half-cycle pulse with the duration of 7.3 attoseconds can be generated from the cascaded scheme. Apart from a one-cycle driving pulse, such a scheme also can be realized with a commercial 100 TW 25 fs driving laser by shaping the pulse with a relativistic plasma lens in advance.
Journal Article
Multi-parameter Bayesian optimisation of laser-driven ion acceleration in particle-in-cell simulations
2022
High power laser-driven ion acceleration produces bright beams of energetic ions that have the potential to be applied in a wide range of sectors. The routine generation of optimised and stable ion beam properties is a key challenge for the exploitation of these novel sources. We demonstrate the optimisation of laser-driven proton acceleration in a programme of particle-in-cell simulations controlled by a Bayesian algorithm. Optimal laser and plasma conditions are identified four times faster for two input parameters, and approximately one thousand times faster for four input parameters, when compared to systematic, linear parametric variation. In addition, a non-trivial optimal condition for the front surface density scale length is discovered, which would have been difficult to identify by single variable scans. This approach enables rapid identification of optimal laser and target parameters in simulations, for use in guiding experiments, and has the potential to significantly accelerate the development and application of laser–plasma-based ion sources.
Journal Article
Super-Heavy Ions Acceleration Driven by Ultrashort Laser Pulses at Ultrahigh Intensity
by
Gong, Zheng
,
Nam, Chang Hee
,
Liu, Jianbo
in
Astrophysics
,
Atomic properties
,
Carbon nanotubes
2021
The acceleration of super-heavy ions (SHIs, mass number of about 200) from plasmas driven by ultrashort (tens of femtoseconds) laser pulses is a challenging topic awaiting a breakthrough. Detecting and controlling the ionization process and adopting the optimal acceleration scheme are crucial for the generation of highly energetic SHIs. Here, we report the experimental results on the generation of deeply ionized super-heavy ions (Au) with unprecedented energy of 1.2 GeV utilizing ultrathin targets and ultrashort laser pulses at an intensity of1022W/cm2. A novel self-calibrated diagnostic method was developed to acquire the absolute energy spectra and charge-state distributions of Au ions abundant at the charge state of51+and extending to61+. The measured charge-state distributions supported by 2D particle-in-cell simulations serve as an additional tool to inspect the ionization dynamics associated with SHI acceleration, revealing that the laser intensity is the crucial parameter over the pulse duration for Au acceleration. Achieving a long acceleration time without sacrificing the strength of the acceleration field by utilizing composite targets can substantially increase the maximum energy of Au ions.
Journal Article
Impact of the laser spatio-temporal shape on Breit–Wheeler pair production
by
Di Piazza, A
,
Niel, F
,
Mercuri-Baron, A
in
Constraint modelling
,
Decay
,
Gaussian beams (optics)
2021
The forthcoming generation of multi-petawatt lasers opens the way to abundant pair production by the nonlinear Breit–Wheeler process, i.e. the decay of a photon into an electron–positron pair inside an intense laser field. In this paper we explore the optimal conditions for Breit–Wheeler pair production in the head-on collision of a laser pulse with gamma photons. The role of the laser peak intensity versus the focal spot size and shape is examined keeping a constant laser energy to match experimental constraints. A simple model for the soft-shower case, where most pairs originate from the decay of the initial gamma photons, is derived. This approach provides us with a semi-analytical model for more complex situations involving either Gaussian or Laguerre–Gauss (LG) laser beams. We then explore the influence of the order of the LG beams on pair creation. Finally we obtain the result that, above a given threshold, a larger spot size (or a higher order in the case of LG laser beams) is more favorable than a higher peak intensity. Our results match very well with three-dimensional particle-in-cell simulations and can be used to guide upcoming experimental campaigns.
Journal Article
Observation of magnetic field generation via the Weibel instability in interpenetrating plasma flows
2015
Astrophysical processes are often driven by collisionless plasma shock waves. The Weibel instability, a possible mechanism for developing such shocks, has now been generated in a laboratory set-up with laser-generated plasmas.
Collisionless shocks can be produced as a result of strong magnetic fields in a plasma flow, and therefore are common in many astrophysical systems. The Weibel instability is one candidate mechanism for the generation of sufficiently strong fields to create a collisionless shock. Despite their crucial role in astrophysical systems, observation of the magnetic fields produced by Weibel instabilities in experiments has been challenging. Using a proton probe to directly image electromagnetic fields, we present evidence of Weibel-generated magnetic fields that grow in opposing, initially unmagnetized plasma flows from laser-driven laboratory experiments. Three-dimensional particle-in-cell simulations reveal that the instability efficiently extracts energy from the plasma flows, and that the self-generated magnetic energy reaches a few percent of the total energy in the system. This result demonstrates an experimental platform suitable for the investigation of a wide range of astrophysical phenomena, including collisionless shock formation in supernova remnants, large-scale magnetic field amplification, and the radiation signature from gamma-ray bursts.
Journal Article