Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Series Title
      Series Title
      Clear All
      Series Title
  • Reading Level
      Reading Level
      Clear All
      Reading Level
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Content Type
    • Item Type
    • Is Full-Text Available
    • Subject
    • Publisher
    • Source
    • Donor
    • Language
    • Place of Publication
    • Contributors
    • Location
22,309 result(s) for "Particle mass"
Sort by:
Searches for the Zγ decay mode of the Higgs boson and for new high-mass resonances in pp collisions at √s = 13 TeV with the ATLAS detector
A bstract This article presents searches for the Zγ decay of the Higgs boson and for narrow high-mass resonances decaying to Z γ, exploiting Z boson decays to pairs of electrons or muons. The data analysis uses 36.1 fb −1 of pp collisions at s = 13 recorded by the ATLAS detector at the CERN Large Hadron Collider. The data are found to be consistent with the expected Standard Model background. The observed (expected — assuming Standard Model pp → H → Z γ production and decay) upper limit on the production cross section times the branching ratio for pp → H → Z γ is 6.6. (5.2) times the Standard Model prediction at the 95% confidence level for a Higgs boson mass of 125.09 GeV. In addition, upper limits are set on the production cross section times the branching ratio as a function of the mass of a narrow resonance between 250 GeV and 2.4 TeV, assuming spin-0 resonances produced via gluon-gluon fusion, and spin-2 resonances produced via gluon-gluon or quark-antiquark initial states. For high-mass spin-0 resonances, the observed (expected) limits vary between 88 fb (61 fb) and 2.8 fb (2.7 fb) for the mass range from 250 GeV to 2.4 TeV at the 95% confidence level.
Evaporation kinetics and phase of laboratory and ambient secondary organic aerosol
Field measurements of secondary organic aerosol (SOA) find significantly higher mass loads than predicted by models, sparking intense effort focused on finding additional SOA sources but leaving the fundamental assumptions used by models unchallenged. Current air-quality models use absorptive partitioning theory assuming SOA particles are liquid droplets, forming instantaneous reversible equilibrium with gas phase. Further, they ignore the effects of adsorption of spectator organic species during SOA formation on SOA properties and fate. Using accurate and highly sensitive experimental approach for studying evaporation kinetics of size-selected single SOA particles, we characterized room-temperature evaporation kinetics of laboratory-generated α-pinene SOA and ambient atmospheric SOA. We found that even when gas phase organics are removed, it takes ~24 h for pure α-pinene SOA particles to evaporate 75% of their mass, which is in sharp contrast to the ~10 min time scale predicted by current kinetic models. Adsorption of \"spectator\" organic vapors during SOA formation, and aging of these coated SOA particles, dramatically reduced the evaporation rate, and in some cases nearly stopped it. Ambient SOA was found to exhibit evaporation behavior very similar to that of laboratory-generated coated and aged SOA. For all cases studied in this work, SOA evaporation behavior is nearly size-independent and does not follow the evaporation kinetics of liquid droplets, in sharp contrast with model assumptions. The findings about SOA phase, evaporation rates, and the importance of spectator gases and aging all indicate that there is need to reformulate the way SOA formation and evaporation are treated by models.
Search for squarks and gluinos with the ATLAS detector in final states with jets and missing transverse momentum using √s = 8 TeV proton-proton collision data
A bstract A search for squarks and gluinos in final states containing high- p T jets, missing transverse momentum and no electrons or muons is presented. The data were recorded in 2012 by the ATLAS experiment in s = 8 TeV proton-proton collisions at the Large Hadron Collider, with a total integrated luminosity of 20 . 3 fb −1 . Results are interpreted in a variety of simplified and specific supersymmetry-breaking models assuming that R -parity is conserved and that the lightest neutralino is the lightest supersymmetric particle. An exclusion limit at the 95% confidence level on the mass of the gluino is set at 1330 GeV for a simplified model incorporating only a gluino and the lightest neutralino. For a simplified model involving the strong production of first- and second-generation squarks, squark masses below 850 GeV (440 GeV) are excluded for a massless lightest neutralino, assuming mass degenerate (single light-flavour) squarks. In mSUGRA/CMSSM models with tan β = 30, A 0 = −2 m 0 and μ > 0, squarks and gluinos of equal mass are excluded for masses below 1700 GeV. Additional limits are set for non-universal Higgs mass models with gaugino mediation and for simplified models involving the pair production of gluinos, each decaying to a top squark and a top quark, with the top squark decaying to a charm quark and a neutralino. These limits extend the region of supersymmetric parameter space excluded by previous searches with the ATLAS detector.
Interlaboratory Study on Brake Particle Emissions—Part I: Particulate Matter Mass Emissions
The Particle Measurement Programme Informal Working Group (PMP-IWG) coordinated a global interlaboratory study (ILS) on brake wear particle emissions with the participation of 16 testing facilities. Two articles present the main outcomes of the ILS: (I) Particulate matter mass (PM), and (II) Particle Number (PN) emissions. The test matrix covered a wide variety of brake systems and configurations. The tested disc brakes were found to emit PM2.5 and PM10 that varied between 0.8–4.0 mg/km and 2.2–9.5 mg/km per brake, respectively, depending on the type of brake and the applied testing load. The drum brake emitted much lower PM due to its enclosed nature. Almost 37–45% of the emitted PM falls in the fine particle size with this fraction being higher for the drum brake. On the other hand, almost 50–65% of the total brake mass loss falls in particle sizes larger than 10 μm or gets lost before being measured. The most important loss mechanisms for PM in the proposed layout are being discussed. Finally, the PM measurement variability and lab-to-lab reproducibility are investigated.
Improvement in the Mass Resolution of Single Particle Mass Spectrometry Using Delayed Ion Extraction
A specific delayed ion extraction (DIE) technique, which combines a standard rectangular extraction pulse with an exponential pulse, was introduced for a single particle mass spectrometry (SPMS) instrument, and it can focus ions in a wide mass range and results in a mass resolution improvement for the mass range of the studied ions. The experimental results indicate that the average mass resolution for positive ions is about 1000 when the mass-to-charge ratio ( m / z ) is greater than 70, and for negative ions, when the m / z is greater than 70, the average resolution can reach 2000. The highest mass resolutions achieved so far are 1260 for positive ions and 2400 for negative ions for SPMS, which are very beneficial for mass peak interpretation and chemical compound identification. The primary applications for atmospheric particle measurements show that the high mass resolution of SPMS with the DIE technique is very beneficial for the analysis of carbon and metallic element containing particles, and 39 K + with C 3 H 3 + and 41 K + and C 3 H 5 + in organic particles were successfully differentiated using SPMS. The results indicate that SPMS with DIE technique can significantly ease mass peak interpretation and improve the mass assignment ability during analysis. Furthermore, existing SPMS instruments can be improved by a facile retrofitting process to implement the DIE technique. Graphical Abstract The delayed ion extraction method shows a great mass resolution improvement for single particle mass spectrometry.
A stochastic model leading to various particle mass distributions including the RRSB distribution
Modern particle size statistics uses many different statistical distributions, but these distributions are empirical approximations for theoretically unknown relationships. This also holds true for the famous RRSB (Rosin-Rammler-Sperling-Bennett) distribution. Based on the compound Poisson process, this paper introduces a simple stochastic model that leads to a general product form of particle mass distributions. The beauty of this product form is that its two factors characterize separately the two main components of samples of particles, namely, individual particle masses and total particle number. The RRSB distribution belongs to the class of distributions following the new model. Its simple product form can be a starting point for developing new particle mass distributions. The model is applied to the statistical analysis of samples of blast-produced fragments measured by hand, which enables a precise investigation of the mass-size relationship. This model-based analysis leads to plausible estimates of the mass and size factors and helps to understand the influence of blasting conditions on fragment-mass distributions.
Morphology of mixed primary and secondary organic particles and the adsorption of spectator organic gases during aerosol formation
Primary organic aerosol (POA) and associated vapors can play an important role in determining the formation and properties of secondary organic aerosol (SOA). If SOA and POA are miscible, POA will significantly enhance SOA formation and some POA vapor will incorporate into SOA particles. When the two are not miscible, condensation of SOA on POA particles forms particles with complex morphology. In addition, POA vapor can adsorb to the surface of SOA particles increasing their mass and affecting their evaporation rates. To gain insight into SOA/POA interactions we present a detailed experimental investigation of the morphologies of SOA particles formed during ozonolysis of α-pinene in the presence of dioctyl phthalate (DOP) particles, serving as a simplified model of hydrophobic POA, using a single-particle mass spectrometer. Ultraviolet laser depth-profiling experiments were used to characterize two different types of mixed SOA/DOP particles: those formed by condensation of the oxidized α-pinene products on size-selected DOP particles and by condensation of DOP on size-selected α-pinene SOA particles. The results show that the hydrophilic SOA and hydrophobic DOP do not mix but instead form layered phases. In addition, an examination of homogeneously nucleated SOA particles formed in the presence of DOP vapor shows them to have an adsorbed DOP coating layer that is ~4 nm thick and carries 12% of the particles mass. These results may have implications for SOA formation and behavior in the atmosphere, where numerous organic compounds with various volatilities and different polarities are present.
A Novel Apportionment Method Utilizing Particle Mass Size Distribution across Multiple Particle Size Ranges
Many cities in China are facing the dual challenge of PM2.5 and PM10 pollution. There is an urgent need to develop a cost-effective method that can apportion both with high-time resolution. A novel and practical apportionment method is presented in this study. It combines the measurement of particle mass size distribution (PMSD) with an optical particle counter (OPC) and the algorithm of normalized non-negative matrix factorization (N-NMF). Applied in the city center of Baoding, Hebei, this method separates four distinct pollution factors. Their sizes (ordered from the smallest to largest) range from 0.16 μm to 0.6 μm, 0.16 μm to 1.0 μm, 0.5 μm to 17.0 μm, and 2.0 μm to 20.0 μm, respectively. They correspondingly contribute to PM2.5 (PM10) with portions of 26% (17%), 37% (26%), 33% (41%), and 4% (16%), respectively, on average. The smaller three factors are identified as combustion, secondary, and industrial aerosols because of their high correlation with carbonaceous aerosols, nitrate aerosols, and trace elements of Fe/Mn/Ca in PM2.5, respectively. The largest-sized factor is linked to dust aerosols. The primary origin regions, oxidation degrees, and formation mechanisms of each source are further discussed. This provides a scientific basis for the comprehensive management of PM2.5 and PM10 pollution.
Cyclists’ exposure to air pollution: In situ evaluation with a cargo bike platform
Fil: Carreras, Hebe Alejandra. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto Multidisciplinario de Biología Vegetal. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto Multidisciplinario de Biología Vegetal; Argentina