Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
81,529 result(s) for "Particle size"
Sort by:
Size-dependent strong metal-support interaction in TiO2 supported Au nanocatalysts
Abstract The strong metal-support interaction (SMSI) has long been studied in heterogonous catalysis on account of its importance in stabilizing active metals and tuning catalytic performance. As a dynamic process taking place at the metal-support interface, the SMSI is closely related to the metal surface properties which are usually affected by the size of metal nanoparticles (NPs). In this work we report the discovery of a size effect on classical SMSI in Au/TiO 2 catalyst where larger Au particles are more prone to be encapsulated than smaller ones. A thermodynamic equilibrium model was established to describe this phenomenon. According to this finding, the catalytic performance of Au/TiO 2 catalyst with uneven size distribution can be improved by selectively encapsulating the large Au NPs in a hydrogenation reaction. This work not only brings in-depth understanding of the SMSI phenomenon and its formation mechanism, but also provides an alternative approach to refine catalyst performance.
Detection of air and surface contamination by SARS-CoV-2 in hospital rooms of infected patients
Understanding the particle size distribution in the air and patterns of environmental contamination of SARS-CoV-2 is essential for infection prevention policies. Here we screen surface and air samples from hospital rooms of COVID-19 patients for SARS-CoV-2 RNA. Environmental sampling is conducted in three airborne infection isolation rooms (AIIRs) in the ICU and 27 AIIRs in the general ward. 245 surface samples are collected. 56.7% of rooms have at least one environmental surface contaminated. High touch surface contamination is shown in ten (66.7%) out of 15 patients in the first week of illness, and three (20%) beyond the first week of illness (p = 0.01, χ test). Air sampling is performed in three of the 27 AIIRs in the general ward, and detects SARS-CoV-2 PCR-positive particles of sizes >4 µm and 1-4 µm in two rooms, despite these rooms having 12 air changes per hour. This warrants further study of the airborne transmission potential of SARS-CoV-2.
The absorption Ångström exponent of black carbon: from numerical aspects
The absorption Ångström exponent (AAE) is an important aerosol optical parameter used for aerosol characterization and apportionment studies. The AAE of black carbon (BC) particles is widely accepted to be 1.0, although observational estimates give quite a wide range of 0.6–1.3. With considerable uncertainties related to observations, a numerical study is a powerful method, if not the only one, to provide a better and more accurate understanding on BC AAE. This study calculates BC AAE using realistic particle geometries based on fractal aggregate and an accurate numerical optical model (namely the multiple-sphere T-matrix method), and considers bulk properties of an ensemble of BC particles following lognormal size distributions. At odds with the expectations, BC AAE is not 1.0, even when BC is assumed to have small sizes and a wavelength-independent refractive index. With a wavelength-independent refractive index, the AAE of fresh BC is approximately 1.05 and relatively insensitive to particle size. For BC with geometric mean diameters larger than 0.12 µm, BC AAE becomes smaller when BC particles are aged (compact structures or coated by other non-absorptive materials). For coated BC, we prescribe the coating fraction variation based on a laboratory study, where smaller BC cores are shown to develop larger coating fractions than those of bigger BC cores. For both compact and coated BC, the AAE is highly sensitive to particle size distribution, ranging from approximately 0.8 to even over 1.4 with wavelength-independent refractive index. When the refractive index is allowed to vary with wavelength, a feature with observational backing, the BC AAE may show an even wider range. For different BC morphologies, we derive simple empirical equations on BC AAE based on our numerical results, which can serve as a guide for the response of BC AAE to BC size and refractive index. Due to its complex influences, the effects of BC geometry is better to be discussed at certain BC properties, i.e., known size and refractive index.
Validation of a particle tracking analysis method for the size determination of nano- and microparticles
Particle tracking analysis (PTA) is an emerging technique suitable for size analysis of particles with external dimensions in the nano- and sub-micrometre scale range. Only limited attempts have so far been made to investigate and quantify the performance of the PTA method for particle size analysis. This article presents the results of a validation study during which selected colloidal silica and polystyrene latex reference materials with particle sizes in the range of 20 nm to 200 nm were analysed with NS500 and LM10-HSBF NanoSight instruments and video analysis software NTA 2.3 and NTA 3.0. Key performance characteristics such as working range, linearity, limit of detection, limit of quantification, sensitivity, robustness, precision and trueness were examined according to recommendations proposed by EURACHEM. A model for measurement uncertainty estimation following the principles described in ISO/IEC Guide 98-3 was used for quantifying random and systematic variations. For nominal 50 nm and 100 nm polystyrene and a nominal 80 nm silica reference materials, the relative expanded measurement uncertainties for the three measurands of interest, being the mode, median and arithmetic mean of the number-weighted particle size distribution, varied from about 10% to 12%. For the nominal 50 nm polystyrene material, the relative expanded uncertainty of the arithmetic mean of the particle size distributions increased up to 18% which was due to the presence of agglomerates. Data analysis was performed with software NTA 2.3 and NTA 3.0. The latter showed to be superior in terms of sensitivity and resolution.
Influence of the particle size distribution on surface quality and mechanical properties in AM steel parts
Purpose - A recent study confirmed that the particle size distribution of a metallic powder material has a major influence on the density of a part produced by selective laser melting (SLM). Although it is possible to get high density values with different powder types, the processing parameters have to be adjusted accordingly, affecting the process productivity. However, the particle size distribution does not only affect the density but also the surface quality and the mechanical properties of the parts. The purpose of this paper is to investigate the effect of three different powder granulations on the resulting part density, surface quality and mechanical properties of the materials produced.Design methodology approach - The scan surface quality and mechanical properties of three different particle size distributions and two layer thicknesses of 30 and 45 μm were compared. The scan velocities for the different powder types have been adjusted in order to guarantee a part density≥99.5 per cent.Findings - By using an optimised powder material, a low surface roughness can be obtained. A subsequent blasting process can further improve the surface roughness for all powder materials used in this study, although this does not change the ranking of the powders with respect to the resulting surface quality. Furthermore, optimised powder granulations lead generally to improved mechanical properties.Practical implications - The results of this study indicate that the particle size distribution influences the quality of AM metallic parts, produced by SLM. Therefore, it is recommended that any standardisation initiative like ASTM F42 should develop guidelines for powder materials for AM processes. Furthermore, during production, the granulation changes due to spatters. Appropriate quality systems have to be developed.Originality value - The paper clearly shows that the particle size distribution plays an important role regarding density, surface quality and resulting mechanical properties.
Insights into the single-particle composition, size, mixing state, and aspect ratio of freshly emitted mineral dust from field measurements in the Moroccan Sahara using electron microscopy
The chemical and morphological properties of mineral dust aerosols emitted by wind erosion from arid and semi-arid regions influence climate, ocean, and land ecosystems; air quality; and multiple socio-economic sectors. However, there is an incomplete understanding of the emitted dust particle size distribution (PSD) in terms of its constituent minerals that typically result from the fragmentation of soil aggregates during wind erosion. The emitted dust PSD affects the duration of particle transport and thus each mineral's global distribution, along with its specific effect upon climate. This lack of understanding is largely due to the scarcity of relevant in situ measurements in dust sources. To advance our understanding of the physicochemical properties of the emitted dust PSD, we present insights into the elemental composition and morphology of individual dust particles collected during the FRontiers in dust minerAloGical coMposition and its Effects upoN climaTe (FRAGMENT) field campaign in the Moroccan Sahara in September 2019. We analyzed more than 300 000 freshly emitted individual particles by performing offline analysis in the laboratory using scanning electron microscopy (SEM) coupled with energy-dispersive X-ray spectrometry (EDX). Eight major particle-type classes were identified with clay minerals making up the majority of the analyzed particles both by number and mass, followed by quartz, whereas carbonates and feldspar contributed to a lesser extent. We provide an exhaustive analysis of the PSD and potential mixing state of different particle types, focusing largely on iron-rich (Fe oxide-hydroxides) and feldspar particles, which are key to the effects of dust upon radiation and clouds, respectively. Nearly pure or externally mixed Fe oxide-hydroxides are present mostly in diameters smaller than 2 µm, with the highest fraction below 1 µm at about 3.75 % abundance by mass. Fe oxide-hydroxides tend to be increasingly internally mixed with other minerals, especially clays, as particle size increases; i.e., the volume fraction of Fe oxide-hydroxides in aggregates decreases with particle size. Pure (externally mixed) feldspar represented 3.2 % of all the particles by mass, of which we estimated about a 10th to be K-feldspar. The externally mixed total feldspar and K-feldspar abundances are relatively invariant with particle size, in contrast to the increasing abundance of feldspar-like (internally mixed) aggregates with particle size with mass fractions ranging from 5 % to 18 %. We also found that overall the median aspect ratio is rather constant across particle size and mineral groups, although we obtain slightly higher aspect ratios for internally mixed particles. The detailed information on the composition of freshly emitted individual dust particles and quantitative analysis of their mixing state presented here can be used to constrain climate models including mineral species in their representation of the dust cycle.
Multifractal characteristics of soil particle size distribution of abandoned homestead reclamation under different forest management modes
In this study, fast-growing poplar reclaimed from abandoned homestead in Xixian New District, Xi'an City, Shaanxi Province, was used as the research object to explore the multi-fractal characteristics of soil particle size distribution under different management modes of abandoned land (control), irrigation, fertilizer irrigation and mixed fertilizer irrigation. The results showed that the mean values of soil clay, silt and sand in abandoned land were 14.58%, 81.21% and 4.22% respectively, 14.08%, 79.92% and 5.99% under irrigation, 15.17%, 81.19% and 3.64% under fertilizer irrigation, and 16.75%, 80.20% and 3.05% in mixed fertilizer treatment. From 40 cm, with increasing soil depth, soil clay particles increase under irrigation, fertilizer irrigation, and mixed fertilizer irrigation modes. The single fractal dimension of soil particle size distribution (D) in each treatment ranges from 2.721 to 2.808. At 60-100 cm, D shows fertilizer irrigation > mixed fertilizer irrigation > irrigation > abandoned land, indicating that fertilization and irrigation can increase the fine-grained matter of deep soil particles and reduce soil roughness. Compared with abandoned land, under irrigation, fertilizer irrigation and mixed fertilizer modes the capacity dimension (D ), entropy dimension (D ), correlation dimension(D ), shape characteristics of the multifractal spectrum (Δf) and overall inhomogeneity of the soil particle size distribution (D -D ) indicate an uneven distribution of soil particle size; fractal structure characteristics of soil (D -D ) indicate a simplified soil structure, and degree of dispersion of soil particle size distribution (D /D ) indicates that soil particle size is distributed in dense areas. Pearson correlation analysis showed that D was significantly correlated with clay, sand, D -D , soil organic matter (SOM) and soil available phosphorus (SAP) (P < 0.05). Stepwise regression analysis showed that clay was the main controlling factor of D and D -D changes. The research results can provide some potential indicators for the quality evaluation of abandoned homestead reclamation.
The Effects of Natural and Anthropogenic Microparticles on Individual Fitness in Daphnia magna
Concerns are being raised that microplastic pollution can have detrimental effects on the feeding of aquatic invertebrates, including zooplankton. Both small plastic fragments (microplastics, MPs) produced by degradation of larger plastic waste (secondary MPs; SMPs) and microscopic plastic spheres used in cosmetic products and industry (primary MPs; PMPs) are ubiquitously present in the environment. However, despite the fact that most environmental MPs consist of weathered plastic debris with irregular shape and broad size distribution, experimental studies of organism responses to MP exposure have largely used uniformly sized spherical PMPs. Therefore, effects observed for PMPs in such experiments may not be representative for MP-effects in situ. Moreover, invertebrate filter-feeders are generally well adapted to the presence of refractory material in seston, which questions the potential of MPs at environmentally relevant concentrations to measurably affect digestion in these organisms. Here, we compared responses to MPs (PMPs and SMPs) and naturally occurring particles (kaolin clay) using the cladoceran Daphnia magna as a model organism. We manipulated food levels (0.4 and 9 μg C mL-1) and MP or kaolin contribution to the feeding suspension (<1 to 74%) and evaluated effects of MPs and kaolin on food uptake, growth, reproductive capacity of the daphnids, and maternal effects on offspring survival and feeding. Exposure to SMPs caused elevated mortality, increased inter-brood period and decreased reproduction albeit only at high MP levels in the feeding suspension (74% by particle count). No such effects were observed in either PMP or kaolin treatments. In daphnids exposed to any particle type at the low algal concentration, individual growth decreased by ~15%. By contrast, positive growth response to all particle types was observed at the high algal concentration with 17%, 54% and 40% increase for kaolin, PMP and SMP, respectively. When test particles comprised 22% in the feeding suspension, both MP types decreased food intake by 30%, while kaolin had no effect. Moreover, SMPs were found to homoaggregate in a concentration-dependent manner, which resulted in a 77% decrease of the ingested SMPs compared to PMPs. To better understand MP-processing in the gut, gut passage time (GPT) and evacuation rate of MPs were also assayed. SMPs and PMPs differed in their effects on daphnids; moreover, the particle effects were dependent on the MP: algae ratio in the suspension. When the MP contribution to the particle abundance in the medium changed from 1 to 4%, GPT for daphnids exposed to SMPs increased 2-fold. Our results suggest that MPs and, in particular, SMPs, have a greater capacity to negatively affect feeding in D. magna compared to naturally occurring mineral particles of similar size. Moreover, grazer responses observed in experiments with PMPs cannot be extrapolated to the field where SMPs dominate, because of the greater effects caused by the latter.
Element-specific anisotropic growth of shaped platinum alloy nanocrystals
Morphological shape in chemistry and biology owes its existence to anisotropic growth and is closely coupled to distinct functionality. Although much is known about the principal growth mechanisms of monometallic shaped nanocrystals, the anisotropic growth of shaped alloy nanocrystals is still poorly understood. Using aberration-corrected scanning transmission electron microscopy, we reveal an element-specific anisotropic growth mechanism of platinum (Pt) bimetallic nano-octahedra where compositional anisotropy couples to geometric anisotropy. A Pt-rich phase evolves into precursor nanohexapods, followed by a slower step-induced deposition of an M-rich (M = Ni, Co, etc.) phase at the concave hexapod surface forming the octahedral facets. Our finding explains earlier reports on unusual compositional segregations and chemical degradation pathways of bimetallic polyhedral catalysts and may aid rational synthesis of shaped alloy catalysts with desired compositional patterns and properties.
Electronic cigarette power affects count concentration and particle size distribution of vaping aerosol
Electronic cigarettes (EC) have evolved rapidly toward higher powered devices that produce more vaping aerosol and a more satisfying vaping experience. This research characterized the particle size distribution and estimated the mass concentration of vaping aerosols produced at power outputs spanning the operating range typical of second generation variable voltage EC devices. EC aerosol was characterized from a single coil atomizer powered by a variable voltage EC battery at the minimum and maximum dial settings (3.3, 11.2 Watts, W), and a lab controlled power supply (3-11.9 W). Aerosol particle size distribution was measured by a Scanning Mobility Particle Sizer and Aerodynamic Particle Sizer, spanning 16 nm to 19.8 μm. A mouth puff was simulated using a 100 mL glass syringe. Consistent with prior studies, sub-micron EC aerosol size distributions were bimodal, with peaks at 40 and 200 nm, however a previously unreported third mode was observed at approximately 1000 nm. The ~1000 nm mode accounted for 7-20x the aerosol mass of the smaller modes. Increasing atomizer power decreased count concentration of particles <600 nm but increased particle count >600 nm. Particle mass distribution shifted toward micron sized particles with increasing power and increased the respirable fraction of aerosol, likely due to increased coagulation and condensation around nano-sized particles. Vaping power greatly affects EC aerosol count and mass distribution. Mouth puffed EC aerosol spans a much wider particle size range than previously reported, although the major portion of the mass is still well within the alveolar size range the larger particles will deposit within the oro-pharyngeal cavity at 2-3x greater efficiency than in alveoli. These observations have major clinical implications, as aerosol particle size distribution determines deposition sites along the respiratory tract. The results of this experiment stress the need for further research to inform the design, regulation and use of e-cigarette products.