Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
10,203 result(s) for "Particle transport"
Sort by:
Implementation and validation of the GEANT4/AtRIS code to model the radiation environment at Mars
A new GEANT4 particle transport model – the Atmospheric Radiation Interaction Simulator (AtRIS, Banjac et al. 2018. J Geophys Res Space Phys 123 . https://doi.org/10.1029/2018JA026042 ) – has been recently developed in order to model the interaction of radiation with planets. The upcoming instrumentational advancements in the exoplanetary science, in particular transit spectroscopy capabilities of missions like JWST and E-ELT, have motivated the development of a particle transport code with a focus on providing the necessary flexibility in planet specification (atmosphere and soil geometry and composition, tidal locking, oceans, clouds, etc.) for the modeling of radiation environment for exoplanets. Since there are no factors limiting the applicability of AtRIS to Mars and Venus, AtRIS’ unique flexibility opens possibilities for new studies. Following the successful validation against Earth measurements (Banjac et al. 2018. J Geophys Res Space Phys 123 . https://doi.org/10.1029/2018JA026042 ), this work applies AtRIS with a specific implementation of the Martian atmospheric and regolith structure to model the radiation environment at Mars. We benchmark these first modeling results based on different GEANT4 physics lists with the energetic particle spectra recently measured by the Radiation Assessment Detector (RAD) on the surface of Mars. The good agreement between AtRIS and the actual measurement provides one of the first and sound validations of AtRIS and the preferred physics list which could be recommended for predicting the radiation field of other conceivable (exo)planets with an atmospheric environment similar to Mars.
Aerosol Particle Transport and Deposition in Upper and Lower Airways of Infant, Child and Adult Human Lungs
Understanding transportation and deposition (TD) of aerosol particles in the human respiratory system can help clinical treatment of lung diseases using medicines. The lung airway diameters and the breathing capacity of human lungs normally increase with age until the age of 30. Many studies have analyzed the particle TD in the human lung airways. However, the knowledge of the nanoparticle TD in airways of infants and children with varying inhalation flow rates is still limited in the literature. This study investigates nanoparticle (5 nm ≤ dp ≤ 500 nm) TD in the lungs of infants, children, and adults. The inhalation air flow rates corresponding to three ages are considered as Qin=3.22 L/min (infant), 8.09 L/min (Child), and Qin=14 L/min (adult). It is found that less particles are deposited in upper lung airways (G0–G3) than in lower airways (G12–G15) in the lungs of all the three age groups. The results suggest that the particle deposition efficiency in lung airways increases with the decrease of particle size due to the Brownian diffusion mechanism. About 3% of 500 nm particles are deposited in airways G12–G15 for the three age groups. As the particle size is decreased to 5 nm, the deposition rate in G12–G15 is increased to over 95%. The present findings can help medical therapy by individually simulating the distribution of drug-aerosol for the patient-specific lung.
Effects of particle–fluid coupling on particle transport and capture in a magnetophoretic microsystem
A numerical analysis is presented of the effects of particle–fluid coupling on the transport and capture of magnetic particles in a microfluidic system under the influence of an applied magnetic field. Particle motion is predicted using a computational fluid dynamic CFD-based Lagrangian–Eulerian approach that takes into account dominant particle forces as well as two-way particle–fluid coupling. Two dimensionless groups are introduced that characterize particle capture, one that scales the magnetic and hydrodynamic forces on the particle and another that scales the distance to the magnetic field source. An analysis is preformed to parameterize capture efficiency with respect to the dimensionless numbers for both one-way and two-way particle–fluid coupling. For one-way coupling, in which the flow field is uncoupled from particle motion, correlations are developed that provide insight into system performance towards optimization. The difference in capture efficiency for one-way versus two-way coupling is analyzed and quantified. The analysis demonstrates that one-way coupling, in the dilute limit, provides a conservative estimate of capture efficiency in that it overpredicts the magnetic force needed to ensure particle capture as compared with a more rigorous fully coupled analysis. In two-way coupling there is a cooperative effect between the magnetic force and a particle-induced fluidic force that enhances capture efficiency. Thus, while one-way coupling is useful for rapid parametric screening of particle capture performance, more accurate predictions require two-way particle–fluid coupling. This is especially true when considering higher capture efficiencies and/or higher particle concentrations.
A Review of Respiratory Anatomical Development, Air Flow Characterization and Particle Deposition
The understanding of complex inhalation and transport processes of pollutant particles through the human respiratory system is important for investigations into dosimetry and respiratory health effects in various settings, such as environmental or occupational health. The studies over the last few decades for micro- and nanoparticle transport and deposition have advanced the understanding of drug-aerosol impacts in the mouth-throat and the upper airways. However, most of the Lagrangian and Eulerian studies have utilized the non-realistic symmetric anatomical model for airflow and particle deposition predictions. Recent improvements to visualization techniques using high-resolution computed tomography (CT) data and the resultant development of three dimensional (3-D) anatomical models support the realistic representation of lung geometry. Yet, the selection of different modelling approaches to analyze the transitional flow behavior and the use of different inlet and outlet conditions provide a dissimilar prediction of particle deposition in the human lung. Moreover, incorporation of relevant physical and appropriate boundary conditions are important factors to consider for the more accurate prediction of transitional flow and particle transport in human lung. This review critically appraises currently available literature on airflow and particle transport mechanism in the lungs, as well as numerical simulations with the aim to explore processes involved. Numerical studies found that both the Euler-Lagrange (E-L) and Euler-Euler methods do not influence nanoparticle (particle diameter ≤50 nm) deposition patterns at a flow rate ≤25 L/min. Furthermore, numerical studies demonstrated that turbulence dispersion does not significantly affect nanoparticle deposition patterns. This critical review aims to develop the field and increase the state-of-the-art in human lung modelling.
Perpendicular Transport of Energetic Particles in Magnetic Turbulence
Scientists have explored how energetic particles such as solar energetic particles and cosmic rays move through a magnetized plasma such as the interplanetary and interstellar medium since more than five decades. From a theoretical point of view, this topic is difficult because the particles experience complicated interactions with turbulent magnetic fields. Besides turbulent fields, there are also large scale or mean magnetic fields breaking the symmetry in such systems and one has to distinguish between transport of particles parallel and perpendicular with respect to such mean fields. In standard descriptions of transport phenomena, one often assumes that the transport in both directions is normal diffusive but non-diffusive transport was found in more recent work. This is in particular true for early and intermediate times where the diffusive regime is not yet reached. In recent years researchers employed advanced numerical tools in order to simulate the motion of those particles through the aforementioned systems. Nevertheless, the analytical description of the problem discussed here is of utmost importance since analytical forms of particle transport parameters need to be known in several applications such as solar modulation studies or investigations of shock acceleration. The latter process is directly linked to the question of what the sources of high energy cosmic rays are, a problem which is considered to be one of the most important problems of the sciences of the 21st century. The present review article discusses analytical theories developed for describing particle transport across a large scale magnetic field as well as field line random walk. A heuristic approach explaining the basic physics of perpendicular transport is also presented. Simple analytical forms for the perpendicular diffusion coefficient are proposed which can easily be incorporated in numerical codes for solar modulation or shock acceleration studies. Test-particle simulations are also discussed together with a comparison with analytical results. Several applications such as cosmic ray propagation and diffusive shock acceleration are also part of this review.
A Primer on Focused Solar Energetic Particle Transport
The basics of focused transport as applied to solar energetic particles are reviewed, paying special attention to areas of common misconception. The micro-physics of charged particles interacting with slab turbulence are investigated to illustrate the concept of pitch-angle scattering, where after the distribution function and focused transport equation are introduced as theoretical tools to describe the transport processes and it is discussed how observable quantities can be calculated from the distribution function. In particular, two approximations, the diffusion-advection and the telegraph equation, are compared in simplified situations to the full solution of the focused transport equation describing particle motion along a magnetic field line. It is shown that these approximations are insufficient to capture the complexity of the physical processes involved. To overcome such limitations, a finite-difference model, which is open for use by the public, is introduced to solve the focused transport equation. The use of the model is briefly discussed and it is shown how the model can be applied to reproduce an observed solar energetic electron event, providing insights into the acceleration and transport processes involved. Past work and literature on the application of these concepts are also reviewed, starting with the most basic models and building up to more complex models.
Phase space transport in the interaction between shocks and plasma turbulence
The interaction of collisionless shocks with fully developed plasma turbulence is numerically investigated. Hybrid kinetic simulations, where a turbulent jet is slammed against an oblique shock, are employed to address the role of upstream turbulence on plasma transport. A technique, using coarse graining of the Vlasov equation, is proposed, showing that the particle transport strongly depends on upstream turbulence properties, such as strength and coherency. These results might be relevant for the understanding of acceleration and heating processes in space plasmas.
Insights into the single-particle composition, size, mixing state, and aspect ratio of freshly emitted mineral dust from field measurements in the Moroccan Sahara using electron microscopy
The chemical and morphological properties of mineral dust aerosols emitted by wind erosion from arid and semi-arid regions influence climate, ocean, and land ecosystems; air quality; and multiple socio-economic sectors. However, there is an incomplete understanding of the emitted dust particle size distribution (PSD) in terms of its constituent minerals that typically result from the fragmentation of soil aggregates during wind erosion. The emitted dust PSD affects the duration of particle transport and thus each mineral's global distribution, along with its specific effect upon climate. This lack of understanding is largely due to the scarcity of relevant in situ measurements in dust sources. To advance our understanding of the physicochemical properties of the emitted dust PSD, we present insights into the elemental composition and morphology of individual dust particles collected during the FRontiers in dust minerAloGical coMposition and its Effects upoN climaTe (FRAGMENT) field campaign in the Moroccan Sahara in September 2019. We analyzed more than 300 000 freshly emitted individual particles by performing offline analysis in the laboratory using scanning electron microscopy (SEM) coupled with energy-dispersive X-ray spectrometry (EDX). Eight major particle-type classes were identified with clay minerals making up the majority of the analyzed particles both by number and mass, followed by quartz, whereas carbonates and feldspar contributed to a lesser extent. We provide an exhaustive analysis of the PSD and potential mixing state of different particle types, focusing largely on iron-rich (Fe oxide-hydroxides) and feldspar particles, which are key to the effects of dust upon radiation and clouds, respectively. Nearly pure or externally mixed Fe oxide-hydroxides are present mostly in diameters smaller than 2 µm, with the highest fraction below 1 µm at about 3.75 % abundance by mass. Fe oxide-hydroxides tend to be increasingly internally mixed with other minerals, especially clays, as particle size increases; i.e., the volume fraction of Fe oxide-hydroxides in aggregates decreases with particle size. Pure (externally mixed) feldspar represented 3.2 % of all the particles by mass, of which we estimated about a 10th to be K-feldspar. The externally mixed total feldspar and K-feldspar abundances are relatively invariant with particle size, in contrast to the increasing abundance of feldspar-like (internally mixed) aggregates with particle size with mass fractions ranging from 5 % to 18 %. We also found that overall the median aspect ratio is rather constant across particle size and mineral groups, although we obtain slightly higher aspect ratios for internally mixed particles. The detailed information on the composition of freshly emitted individual dust particles and quantitative analysis of their mixing state presented here can be used to constrain climate models including mineral species in their representation of the dust cycle.
A Hitch-hiker’s Guide to Stochastic Differential Equations
In this review, an overview of the recent history of stochastic differential equations (SDEs) in application to particle transport problems in space physics and astrophysics is given. The aim is to present a helpful working guide to the literature and at the same time introduce key principles of the SDE approach via “toy models”. Using these examples, we hope to provide an easy way for newcomers to the field to use such methods in their own research. Aspects covered are the solar modulation of cosmic rays, diffusive shock acceleration, galactic cosmic ray propagation and solar energetic particle transport. We believe that the SDE method, due to its simplicity and computational efficiency on modern computer architectures, will be of significant relevance in energetic particle studies in the years to come.
Effect of gravity on colloidal particle transport in a saturated porous medium: Analytical solutions and experiments
The colloidal particle transport process in all porous media from laboratory to nature is affected by gravity. In this paper, a mathematical model of colloidal particle migration in a saturated porous medium with the gravity effect is established by combining the gap velocity (advection) with the settling velocity (gravity effect), and an analytical solution of the particle migration problem with time variation of the particle injection intensity is obtained using an integral transformation. The correctness and rationality of the analytical solution are verified by comparing the experimental and theoretical results of the particle migration problem in the point-source transient injection mode. The analytical solution can easily analyze the colloid transport experimental data in a variety of seepage directions. Analysis of the influence of seepage velocities in three different seepage directions on particle transport parameters shows: under the same seepage direction, the peak value of the breakthrough curve increased with an increase in the seepage velocity. The dispersion, adsorption coefficient, and deposition rate decreased with an increase in the seepage velocity. Under the same seepage velocity, the peak value of the breakthrough curve from large to small was vertically downward (VD)> horizontal (H)> vertically upward (VU), the order of dispersion from large to small was vertically downward (VD)>horizontal (H) >vertically upward (VU), the order of the adsorption coefficient and deposition rate of particles from large to small was vertically upward (VU)> horizontal (H) >vertically downward (VD), and the smaller the seepage velocity, the greater the relative differences in the peak value of the breakthrough curve, dispersion, the particle adsorption coefficient, and the deposition rate in the different seepage directions. Therefore, gravity is an important mechanism of particle migration in saturated porous media. The larger the particle size and density were, the smaller the seepage velocity was and the more obvious the effect of gravity. The findings of this study can help for better understanding of colloidal transport properties in porous media under the coupled effects of gravity and hydrodynamics.