Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Series Title
      Series Title
      Clear All
      Series Title
  • Reading Level
      Reading Level
      Clear All
      Reading Level
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Content Type
    • Item Type
    • Is Full-Text Available
    • Subject
    • Publisher
    • Source
    • Donor
    • Language
    • Place of Publication
    • Contributors
    • Location
52,249 result(s) for "Particles (Nuclear physics)"
Sort by:
Electron-ion collider in China
Lepton scattering is an established ideal tool for studying inner structure of small particles such as nucleons as well as nuclei. As a future high energy nuclear physics project, an Electron-ion collider in China (EicC) has been proposed. It will be constructed based on an upgraded heavy-ion accelerator, High Intensity heavy-ion Accelerator Facility (HIAF) which is currently under construction, together with a new electron ring. The proposed collider will provide highly polarized electrons (with a po- larization of 80%) and protons (with a polarization of 70%) with variable center of mass energies from 15 to 20 GeV and the luminosity of (2-3)×10 33 cm −2*s −1. Polarized deuterons and Helium-3, as well as unpolarized ion beams from Carbon to Uranium, will be also available at the EicC. The main foci of the EicC will be precision measurements of the structure of the nucleon in the sea quark region, including 3D tomography of nucleon; the partonic structure of nuclei and the parton interaction with the nuclear environment; the exotic states, especially those with heavy flavor quark contents. In addition, issues fundamental to understanding the origin of mass could be addressed by measurements of heavy quarkonia near-threshold production at the EicC. In order to achieve the above-mentioned physics goals, a hermetical detector system will be constructed with cutting-edge technologies. This document is the result of collective contributions and valuable inputs from experts across the globe. The EicC physics program complements the ongoing scientific programs at the Jefferson Laboratory and the future EIC project in the United States. The success of this project will also advance both nuclear and particle physics as well as accelerator and detector technology in China.
Towards a muon collider
A muon collider would enable the big jump ahead in energy reach that is needed for a fruitful exploration of fundamental interactions. The challenges of producing muon collisions at high luminosity and 10 TeV centre of mass energy are being investigated by the recently-formed International Muon Collider Collaboration. This Review summarises the status and the recent advances on muon colliders design, physics and detector studies. The aim is to provide a global perspective of the field and to outline directions for future work.
Strong interaction physics at the luminosity frontier with 22 GeV electrons at Jefferson Lab
[...]CEBAF today, and with an energy upgrade, will continue to operate with several orders of magnitude higher luminosity than what is planned at the Electron-Ion Collider (EIC). Photoproduction cross sections of exotic states could be decisive in understanding the nature of a subset of the pentaquark and tetraquark candidates that contain charm and anti-charm quarks. [...]in Hall B the high-intensity flux of quasi-real photons at high energy will add the extra capability of studying the Q2 evolution of any new state produced. JLab will be able to explore the proton’s gluonic structure by unique precise measurements of the photo and electroproduction cross section near threshold of J/ψ and higher-mass charmonium states, χc and ψ(2S) . [...]with an increase of the polarization figure-of-merit by an order of magnitude, GlueX will be able to measure polarization observables that are critical to disentangle the reaction mechanism and draw conclusions about the mass properties of the proton. [...]JLab has a uniquely fundamental role to play in the EIC era in the realm of precision separation measurements between the longitudinal ( σL ) and transverse ( σT ) photon contributions to the cross section, which are critical for studies of both semi-inclusive and exclusive processes.
Constraining neutron-star matter with microscopic and macroscopic collisions
Interpreting high-energy, astrophysical phenomena, such as supernova explosions or neutron-star collisions, requires a robust understanding of matter at supranuclear densities. However, our knowledge about dense matter explored in the cores of neutron stars remains limited. Fortunately, dense matter is not probed only in astrophysical observations, but also in terrestrial heavy-ion collision experiments. Here we use Bayesian inference to combine data from astrophysical multi-messenger observations of neutron stars 1 – 9 and from heavy-ion collisions of gold nuclei at relativistic energies 10 , 11 with microscopic nuclear theory calculations 12 – 17 to improve our understanding of dense matter. We find that the inclusion of heavy-ion collision data indicates an increase in the pressure in dense matter relative to previous analyses, shifting neutron-star radii towards larger values, consistent with recent observations by the Neutron Star Interior Composition Explorer mission 5 – 8 , 18 . Our findings show that constraints from heavy-ion collision experiments show a remarkable consistency with multi-messenger observations and provide complementary information on nuclear matter at intermediate densities. This work combines nuclear theory, nuclear experiment and astrophysical observations, and shows how joint analyses can shed light on the properties of neutron-rich supranuclear matter over the density range probed in neutron stars. The physics of dense matter extracted from neutron star collision data is demonstrated to be consistent with information obtained from heavy-ion collisions, and analyses incorporating both data sources as well as information from nuclear theory provide new constraints for neutron star matter.
Heavy-flavor production and medium properties in high-energy nuclear collisions --What next?
. Open and hidden heavy-flavor physics in high-energy nuclear collisions are entering a new and exciting stage towards reaching a clearer understanding of the new experimental results with the possibility to link them directly to the advancement in lattice Quantum Chromo-Dynamics (QCD). Recent results from experiments and theoretical developments regarding open and hidden heavy-flavor dynamics have been debated at the Lorentz Workshop Tomography of the Quark-Gluon Plasma with Heavy Quarks , which was held in October 2016 in Leiden, The Netherlands. In this contribution, we summarize identified common understandings and developed strategies for the upcoming five years, which aim at achieving a profound knowledge of the dynamical properties of the quark-gluon plasma.