Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
65 result(s) for "Passalidae"
Sort by:
Fighting while Parasitized: Can Nematode Infections Affect the Outcome of Staged Combat in Beetles?: e0121614
The effects of non-lethal parasites may be felt most strongly when hosts engage in intense, energy-demanding behaviors. One such behavior is fighting with conspecifics, which is common among territorial animals, including many beetle species. We examined the effects of parasites on the fighting ability of a saproxylic beetle, the horned passalus (Odontotaenius disjunctus, Family: Passalidae), which is host to a non-lethal nematode, Chondronema passali. We pitted pairs of randomly-chosen (but equally-weighted) beetles against each other in a small arena and determined the winner and aggression level of fights. Then we examined beetles for the presence, and severity of nematode infections. There was a non-significant tendency (p = 0.065) for the frequency of wins, losses and draws to differ between beetles with and without C. passali; non-parasitized individuals (n = 104) won 47% of their fights while those with the parasite (n = 88) won 34%, a 13% difference in wins. The number of nematodes in a beetle affected the outcome of fights between infected and uninfected individuals in an unexpected fashion: fighting ability was lowest in beetles with the lowest (p = 0.033), not highest (p = 0.266), nematode burdens. Within-fight aggression was highest when both beetles were uninfected and lowest when both were infected (p = 0.034). Collectively, these results suggest the nematode parasite, C. passali, is associated with a modest reduction in fighting ability in horned passalus beetles, consistent with the idea that parasitized beetles have lower energy available for fighting. This study adds to a small but growing body of evidence showing how parasites negatively influence fighting behavior in animals.
On the nomenclatural status of type genera in Coleoptera (Insecta)
More than 4700 nominal family-group names (including names for fossils and ichnotaxa) are nomenclaturally available in the order Coleoptera. Since each family-group name is based on the concept of its type genus, we argue that the stability of names used for the classification of beetles depends on accurate nomenclatural data for each type genus. Following a review of taxonomic literature, with a focus on works that potentially contain type species designations, we provide a synthesis of nomenclatural data associated with the type genus of each nomenclaturally available family-group name in Coleoptera. For each type genus the author(s), year of publication, and page number are given as well as its current status (i.e., whether treated as valid or not) and current classification. Information about the type species of each type genus and the type species fixation (i.e., fixed originally or subsequently, and if subsequently, by whom) is also given. The original spelling of the family-group name that is based on each type genus is included, with its author(s), year, and stem. We append a list of nomenclaturally available family-group names presented in a classification scheme. Because of the importance of the Principle of Priority in zoological nomenclature, we provide information on the date of publication of the references cited in this work, when known. Several nomenclatural issues emerged during the course of this work. We therefore appeal to the community of coleopterists to submit applications to the International Commission on Zoological Nomenclature (henceforth “Commission”) in order to permanently resolve some of the problems outlined here. The following changes of authorship for type genera are implemented here (these changes do not affect the concept of each type genus): CHRYSOMELIDAE: Fulcidax Crotch, 1870 (previously credited to “Clavareau, 1913”); CICINDELIDAE: Euprosopus W.S. MacLeay, 1825 (previously credited to “Dejean, 1825”); COCCINELLIDAE: Alesia Reiche, 1848 (previously credited to “Mulsant, 1850”); CURCULIONIDAE: Arachnopus Boisduval, 1835 (previously credited to “Guérin-Méneville, 1838”); ELATERIDAE: Thylacosternus Gemminger, 1869 (previously credited to “Bonvouloir, 1871”); EUCNEMIDAE: Arrhipis Gemminger, 1869 (previously credited to “Bonvouloir, 1871”), Mesogenus Gemminger, 1869 (previously credited to “Bonvouloir, 1871”); LUCANIDAE: Sinodendron Hellwig, 1791 (previously credited to “Hellwig, 1792”); PASSALIDAE: Neleides Harold, 1868 (previously credited to “Kaup, 1869”), Neleus Harold, 1868 (previously credited to “Kaup, 1869”), Pertinax Harold, 1868 (previously credited to “Kaup, 1869”), Petrejus Harold, 1868 (previously credited to “Kaup, 1869”), Undulifer Harold, 1868 (previously credited to “Kaup, 1869”), Vatinius Harold, 1868 (previously credited to “Kaup, 1869”); PTINIDAE: Mezium Leach, 1819 (previously credited to “Curtis, 1828”); PYROCHROIDAE: Agnathus Germar, 1818 (previously credited to “Germar, 1825”); SCARABAEIDAE: Eucranium Dejean, 1833 (previously “Brullé, 1838”). The following changes of type species were implemented following the discovery of older type species fixations (these changes do not pose a threat to nomenclatural stability): BOLBOCERATIDAE: Bolbocerus bocchus Erichson, 1841 for Bolbelasmus Boucomont, 1911 (previously Bolboceras gallicum Mulsant, 1842); BUPRESTIDAE: Stigmodera guerinii Hope, 1843 for Neocuris Saunders, 1868 (previously Anthaxia fortnumi Hope, 1846), Stigmodera peroni Laporte & Gory, 1837 for Curis Laporte & Gory, 1837 (previously Buprestis caloptera Boisduval, 1835); CARABIDAE: Carabus elatus Fabricius, 1801 for Molops Bonelli, 1810 (previously Carabus terricola Herbst, 1784 sensu Fabricius, 1792); CERAMBYCIDAE: Prionus palmatus Fabricius, 1792 for Macrotoma Audinet-Serville, 1832 (previously Prionus serripes Fabricius, 1781); CHRYSOMELIDAE: Donacia equiseti Fabricius, 1798 for Haemonia Dejean, 1821 (previously Donacia zosterae Fabricius, 1801), Eumolpus ruber Latreille, 1807 for Euryope Dalman, 1824 (previously Cryptocephalus rubrifrons Fabricius, 1787), Galeruca affinis Paykull, 1799 for Psylliodes Latreille, 1829 (previously Chrysomela chrysocephala Linnaeus, 1758); COCCINELLIDAE: Dermestes rufus Herbst, 1783 for Coccidula Kugelann, 1798 (previously Chrysomela scutellata Herbst, 1783); CRYPTOPHAGIDAE: Ips caricis G.-A. Olivier, 1790 for Telmatophilus Heer, 1841 (previously Cryptophagus typhae Fallén, 1802), Silpha evanescens Marsham, 1802 for Atomaria Stephens, 1829 (previously Dermestes nigripennis Paykull, 1798); CURCULIONIDAE: Bostrichus cinereus Herbst, 1794 for Crypturgus Erichson, 1836 (previously Bostrichus pusillus Gyllenhal, 1813); DERMESTIDAE: Dermestes trifasciatus Fabricius, 1787 for Attagenus Latreille, 1802 (previously Dermestes pellio Linnaeus, 1758); ELATERIDAE: Elater sulcatus Fabricius, 1777 for Chalcolepidius Eschscholtz, 1829 (previously Chalcolepidius zonatus Eschscholtz, 1829); ENDOMYCHIDAE: Endomychus rufitarsis Chevrolat, 1835 for Epipocus Chevrolat, 1836 (previously Endomychus tibialis Guérin-Méneville, 1834); EROTYLIDAE: Ips humeralis Fabricius, 1787 for Dacne Latreille, 1797 (previously Dermestes bipustulatus Thunberg, 1781); EUCNEMIDAE: Fornax austrocaledonicus Perroud & Montrouzier, 1865 for Mesogenus Gemminger, 1869 (previously Mesogenus mellyi Bonvouloir, 1871); GLAPHYRIDAE: Melolontha serratulae Fabricius, 1792 for Glaphyrus Latreille, 1802 (previously Scarabaeus maurus Linnaeus, 1758); HISTERIDAE: Hister striatus Forster, 1771 for Onthophilus Leach, 1817 (previously Hister sulcatus Moll, 1784); LAMPYRIDAE: Ototreta fornicata E. Olivier, 1900 for Ototreta E. Olivier, 1900 (previously Ototreta weyersi E. Olivier, 1900); LUCANIDAE: Lucanus cancroides Fabricius, 1787 for Lissotes Westwood, 1855 (previously Lissotes menalcas Westwood, 1855); MELANDRYIDAE: Nothus clavipes G.-A. Olivier, 1812 for Nothus G.-A. Olivier, 1812 (previously Nothus praeustus G.-A. Olivier, 1812); MELYRIDAE: Lagria ater Fabricius, 1787 for Enicopus Stephens, 1830 (previously Dermestes hirtus Linnaeus, 1767); NITIDULIDAE: Sphaeridium luteum Fabricius, 1787 for Cychramus Kugelann, 1794 (previously Strongylus quadripunctatus Herbst, 1792); OEDEMERIDAE: Helops laevis Fabricius, 1787 for Ditylus Fischer, 1817 (previously Ditylus helopioides Fischer, 1817 [sic]); PHALACRIDAE: Sphaeridium aeneum Fabricius, 1792 for Olibrus Erichson, 1845 (previously Sphaeridium bicolor Fabricius, 1792); RHIPICERIDAE: Sandalus niger Knoch, 1801 for Sandalus Knoch, 1801 (previously Sandalus petrophya Knoch, 1801); SCARABAEIDAE: Cetonia clathrata G.-A. Olivier, 1792 for Inca Lepeletier & Audinet-Serville, 1828 (previously Cetonia ynca Weber, 1801); Gnathocera vitticollis W. Kirby, 1825 for Gnathocera W. Kirby, 1825 (previously Gnathocera immaculata W. Kirby, 1825); Melolontha villosula Illiger, 1803 for Chasmatopterus Dejean, 1821 (previously Melolontha hirtula Illiger, 1803); STAPHYLINIDAE: Staphylinus politus Linnaeus, 1758 for Philonthus Stephens, 1829 (previously Staphylinus splendens Fabricius, 1792); ZOPHERIDAE: Hispa mutica Linnaeus, 1767 for Orthocerus Latreille, 1797 (previously Tenebrio hirticornis DeGeer, 1775). The discovery of type species fixations that are older than those currently accepted pose a threat to nomenclatural stability (an application to the Commission is necessary to address each problem): CANTHARIDAE: Malthinus Latreille, 1805, Malthodes Kiesenwetter, 1852; CARABIDAE: Bradycellus Erichson, 1837, Chlaenius Bonelli, 1810, Harpalus Latreille, 1802, Lebia Latreille, 1802, Pheropsophus Solier, 1834, Trechus Clairville, 1806; CERAMBYCIDAE: Callichroma Latreille, 1816, Callidium Fabricius, 1775, Cerasphorus Audinet-Serville, 1834, Dorcadion Dalman, 1817, Leptura Linnaeus, 1758, Mesosa Latreille, 1829, Plectromerus Haldeman, 1847; CHRYSOMELIDAE: Amblycerus Thunberg, 1815, Chaetocnema Stephens, 1831, Chlamys Knoch, 1801, Monomacra Chevrolat, 1836, Phratora Chevrolat, 1836, Stylosomus Suffrian, 1847; COLONIDAE: Colon Herbst, 1797; CURCULIONIDAE: Cryphalus Erichson, 1836, Lepyrus Germar, 1817; ELATERIDAE: Adelocera Latreille, 1829, Beliophorus Eschscholtz, 1829; ENDOMYCHIDAE: Amphisternus Germar, 1843, Dapsa Latreille, 1829; GLAPHYRIDAE: Anthypna Eschscholtz, 1818; HISTERIDAE: Hololepta Paykull, 1811, Trypanaeus Eschscholtz, 1829; LEIODIDAE: Anisotoma Panzer, 1796, Camiarus Sharp, 1878, Choleva Latreille, 1797; LYCIDAE: Calopteron Laporte, 1838, Dictyoptera Latreille, 1829; MELOIDAE: Epicauta Dejean, 1834; NITIDULIDAE: Strongylus Herbst, 1792; SCARABAEIDAE: Anisoplia Schönherr, 1817, Anticheira Eschscholtz, 1818, Cyclocephala Dejean, 1821, Glycyphana Burmeister, 1842, Omaloplia Schönherr, 1817, Oniticellus Dejean, 1821, Parachilia Burmeister, 1842, Xylotrupes Hope, 1837; STAPHYLINIDAE: Batrisus Aubé, 1833, Phloeonomus Heer, 1840, Silpha Linnaeus, 1758; TENEBRIONIDAE: Bolitophagus Illiger, 1798, Mycetochara Guérin-Méneville, 1827. Type species are fixed for the following nominal genera: ANTHRIBIDAE: Decataphanes gracilis Labram & Imhoff, 1840 for Decataphanes Labram & Imhoff, 1840; CARABIDAE: Feronia erratica Dejean, 1828 for Loxandrus J.L. LeConte, 1853; CERAMBYCIDAE: Tmesisternus oblongus Boisduval, 1835 for Icthyosoma Boisduval, 1835; CHRYSOMELIDAE: Brachydactyla annulipes Pic, 1913 for Pseudocrioceris Pic, 1916, Cassida viridis Linnaeus, 1758 for Evaspistes Gistel, 1856, Ocnoscelis cyanoptera Erichson, 1847 for Ocnoscelis Erichson, 1847, Promecotheca petelii Guérin-Méneville, 1840 for Promecotheca Guérin- Méneville, 1840; CLERIDAE: Attelabus mollis Linnaeus, 1758 for Dendroplanetes Gistel, 1856; CORYLOPHIDAE: Corylophus marginicollis J.L. LeConte, 1852 for Corylophodes A. Matthews, 1885; CURCULIONIDAE: Hoplorhinus melanocephalus Chevrolat, 1878 for Hoplorhinus Chevrolat, 1878; Sonnetius binarius Casey, 1922 for Sonnetius Casey, 1922; ELATERIDAE: Pyrophorus melanoxanthus Candèze, 1865 for Alampes Champion, 1896; PHYCOSECIDAE: Phycosecis litoralis P
Areas of endemism persist through time: A palaeoclimatic analysis in the Mexican Transition Zone
Aim: The Mexican Transition Zone (MTZ) is an area where the Nearctic and Neotropical biogeographical regions overlap, generating high species richness and endemism. The objective of this study was to analyse if potential changes in the composition and the geographical location of areas of endemism (AEs) for beetles and mammals during the Last Glacial Maximum (LGM), the mid-Holocene (MH) or the Last Interglacial (LIG) have influenced the definition of the MTZ in the present. Location: Mexico and Central America. Methods: Ecological niche models (ENM) were generated describing the current distribution of 218 species associated with the MTZ and then transferred to three periods into the past. A parsimony analysis of endemicity (PAE) was run to identify current AEs. The transferred models of each set of species that form the current AEs were used to assess if the geographical ranges of the species' ecological niches changed over time, or whether they remained stable supporting the validation of the AEs during three past recent periods (LGM, MH and LIG). Results: Two current AEs were detected that persisted geographically during the three past periods (LGM, MH and LIG). Main conclusions: The results show that some AEs change through time as a response of climate, whereas others remained stable. Thus, the MTZ could be considered as a dynamic zone at least over the last 130,000 years. The climate analysis of the AEs allows them to be recognized either as true spatio-temporal units, or as temporarily restricted patterns of co-distribution resulting from changes in climate over time.
Compartmentalized microbial composition, oxygen gradients and nitrogen fixation in the gut of Odontotaenius disjunctus
Coarse woody debris is an important biomass pool in forest ecosystems that numerous groups of insects have evolved to take advantage of. These insects are ecologically important and represent useful natural analogs for biomass to biofuel conversion. Using a range of molecular approaches combined with microelectrode measurements of oxygen, we have characterized the gut microbiome and physiology of Odontotaenius disjunctus , a wood-feeding beetle native to the eastern United States. We hypothesized that morphological and physiological differences among gut regions would correspond to distinct microbial populations and activities. In fact, significantly different communities were found in the foregut (FG), midgut (MG)/posterior hindgut (PHG) and anterior hindgut (AHG), with Actinobacteria and Rhizobiales being more abundant toward the FG and PHG. Conversely, fermentative bacteria such as Bacteroidetes and Clostridia were more abundant in the AHG, and also the sole region where methanogenic Archaea were detected. Although each gut region possessed an anaerobic core, micron-scale profiling identified radial gradients in oxygen concentration in all regions. Nitrogen fixation was confirmed by 15 N 2 incorporation, and nitrogenase gene ( nifH ) expression was greatest in the AHG. Phylogenetic analysis of nifH identified the most abundant transcript as related to Ni–Fe nitrogenase of a Bacteroidetes species, Paludibacter propionicigenes . Overall, we demonstrate not only a compartmentalized microbiome in this beetle digestive tract but also sharp oxygen gradients that may permit aerobic and anaerobic metabolism to occur within the same regions in close proximity. We provide evidence for the microbial fixation of N 2 that is important for this beetle to subsist on woody biomass.
Multiple Chromosome Fissions, Including That of the X Chromosome, in Aulacocyclus tricuspis Kaup (Coleoptera, Passalidae) from New Caledonia: Characterization of a Rare but Recurrent Pathway of Chromosome Evolution in Animals
The male karyotype of Aulacocyclus tricuspis Kaup 1868 (Coleoptera, Scarabaeoidea, Passalidae, Aulacocyclinae) from New Caledonia contains an exceptionally high number of chromosomes, almost all of which are acrocentric (53,X1X2Y). Unlike the karyotypes of other species of the pantropical family Passalidae, which are principally composed of metacentric chromosomes, this karyotype is derived by fissions involving almost all the autosomes after breakage in their centromere region. This presupposes the duplication of the centromeres. More surprising is the X chromosome fragmentation. The rarity of X chromosome fission during evolution may be explained by the deleterious effects of alterations to the mechanisms of gene dosage compensation (resulting from the over-expression of the unique X chromosome in male insects). Herein, we propose that its occurrence and persistence were facilitated by (1) the presence of amplified heterochromatin in the X chromosome of Passalidae ancestor, and (2) the capacity of heterochromatin to modulate the regulation of gene expression. In A. tricuspis, we suggest that the portion containing the X proper genes and either a gene-free heterochromatin fragment or a fragment containing a few genes insulated from the peculiar regulation of the X by surrounding heterochromatin were separated by fission. Finally, we show that similar karyotypes with multiple acrocentric autosomes and unusual sex chromosomes rarely occur in species of Coleoptera belonging to the families Vesperidae, Tenebrionidae, and Chrysomelidae. Unlike classical Robertsonian evolution by centric fusion, this pathway of chromosome evolution involving the centric fission of autosomes has rarely been documented in animals.
Passalidae (Coleoptera, Scarabaeoidea) from the Caribbean coast of Colombia: synopsis, key, and new species description
Bess beetles (Passalidae) are a subsocial family of Coleoptera with approximately 1000 known species of saproxylophagous diet and pantropical distribution, with few extratropical species. Because of their high levels of endemism (especially in mountains), feeding habits, and complex subsociability; Passalidae is considered an excellent biological subject for taxonomic, biogeographical, and evolutionary studies. Colombia is the richest country with more than 118 recorded species of Passalidae, most of the species being related to humid and mountain areas. Colombia’s Caribbean region constitutes the northern portion of the country, extending for more than 130,000 km 2 and includes four of the eight biogeographical provinces of Colombia. Since the 2000s this region has been the subject of systematic surveys for Passalidae; as a result, 18 passalid species have been recorded to date. After new explorations and review of entomological collections, the knowledge of the passalid fauna for the region is updated, recording 28 species (8 new records, 2 new species) for which are provided species diagnoses, photographs, and a taxonomic key. The dry plain, characteristic of the lowlands, is dominated by widely distributed species such as Passalus punctiger and Passalus interstitialis , while the mountainous systems provide species of more restricted distributions, some of them endemic to the Colombian Caribbean.
Molecular Phylogeny of Thelastomatoidea (Nematoda) with the Description of a New Genus and Two New Species of Hystrignathidae Associated with Bess Beetles (Coleoptera: Passalidae) from Oaxaca, Mexico
Bess beetles (Passalidae) display important roles in forestall ecosystems, particularly in energy extraction from dead wood. These organisms maintain complex biological interactions with their gut symbiotic communities, including bacteria, protists, and metazoans. Very little is known about symbionts since most of the species of Passalidae haven't been studied from a parasitological point of view. Here we describe a new genus and 2 new species of nematodes of the family Hystrignathidae associated with 2 beetle species of the tribe Proculini collected in the State of Oaxaca, Mexico. Tuhmai garciaprietoi n. gen., n. sp., found in Vindex agnoscendus is characterized by the presence of an unarmed cervical cuticle, a subcylindrical procorpus and a conspicuous isthmus, a monodelphic-prodelphic reproductive system, and a short subulate tail. Urbanonema osorioi n. sp., found in Verres hageni mainly differs from other species of Urbanonema by the number and disposition of cervical spines, as well as by a subulate tail. For each new taxon, we describe the external and internal morphology, and we generated molecular data (nuclear ribosomal DNA) to place the new taxa in a phylogenetic context.
A New Species of Triumphalisnema (Nematoda: Coronostomatoidea) Parasite of Proculejus hirtus (Coleoptera: Passalidae) from Mexico, and the Position of the Family in the Oxyuridomorpha
A new species of the nematode TriumphalisnemaKloss, 1962 (Oxyuridomorpha), is described from the wood beetle Proculejus hirtus Truqui from the mountain mesophilic forest in Hidalgo State, Mexico. Triumphalisnema zuuei n. sp. is distinguished from the other 4 congeners species by the presence of an expanded cervical ring, well-developed lateral alae, an obtuse cauda with a short and bifurcated caudal appendage, series of cuticular folds at ventral and dorsal body surface from excretory pore level to anal region, and ellipsoidal eggs ornamented with numerous small mushroom-like structures over the surface. The phylogenetic position of the new species is inferred based on a Maximum Likelihood and Bayesian Inference analysis of partial sequences of 18S SSU rRNA. The phylogenetic analysis showed that Triumphalisnema zuuei n. sp., the only representative of the Traklosiidae in our study, is closely related to Coynema poeyi and species of Longior, Hystrignathus, and Lepidonema, all of them members of Hystrignathidae. These relationships are supported by high support values. The present study increases to 5 the number of species assigned to Triumphalisnema, all of them parasites of Passalidae. Additionally, a taxonomic key to the species of the genus is provided.
Replicate Studies Separated by 40 Years Reveal Changes in the Altitudinal Stratification of Montane Passalid Beetle Species (Passalidae) in Mesoamerica
Two patterns are apparent in the altitudinal distribution of Neotropical passalid beetles: (a) species that occur only in lowland forest habitats but have broad geographic distributions, and (b) montane endemic species with relatively limited distributions. The transition zone between these distributions in upper Mesoamerica occurs, on average, at approximately 1500 m above sea level (a.s.l.). We studied the altitudinal stratification of passalid beetle communities living on two volcanoes in Guatemala (Atitlan and Santa Maria), revisiting a study conducted in 1981 by MacVean and Schuster. We collected passalid beetles at the same study sites and compared the community composition along the altitudinal gradient. We collected all but one of the species reported by MacVean and Schuster and found three additional species. We observed two key differences in the passalid communities observed in 1981 versus the present: (a) for the Atitlan site, the species’ turnover line from lowland to montane species shifted from 1600 to 1800 m a.s.l.; and (b) in both volcanoes, we collected passalid beetles well above 2700 m a.s.l., which was the upper limit at which they were found in 1981. Both observations are consistent with a shift of the passalid beetle community to higher elevations, perhaps in response to changes in local climate/habitat conditions, including increased temperatures and changes in forest composition.
Uncovering the Cultivable Microbial Diversity of Costa Rican Beetles and Its Ability to Break Down Plant Cell Wall Components
Coleopterans are the most diverse insect order described to date. These organisms have acquired an array of survival mechanisms through their evolution, including highly efficient digestive systems. Therefore, the coleopteran intestinal microbiota constitutes an important source of novel plant cell wall-degrading enzymes with potential biotechnological applications. We isolated and described the cultivable fungi, actinomycetes and aerobic eubacteria associated with the gut of larvae and adults from six different beetle families colonizing decomposing logs in protected Costa Rican ecosystems. We obtained 611 isolates and performed phylogenetic analyses using the ITS region (fungi) and 16S rDNA (bacteria). The majority of fungal isolates belonged to the order Hypocreales (26% of 169 total), while the majority of actinomycetes belonged to the genus Streptomyces (86% of 241 total). Finally, we isolated 201 bacteria spanning 19 different families belonging into four phyla: Firmicutes, α, β and γ-proteobacteria. Subsequently, we focused on microbes isolated from Passalid beetles to test their ability to degrade plant cell wall polymers. Highest scores in these assays were achieved by a fungal isolate (Anthostomella sp.), two Streptomyces and one Bacillus bacterial isolates. Our study demonstrates that Costa Rican beetles harbor several types of cultivable microbes, some of which may be involved in symbiotic relationships that enable the insect to digest complex polymers such as lignocellulose.