Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
6,237
result(s) for
"Patterning"
Sort by:
Morphogen gradient reconstitution reveals Hedgehog pathway design principles
by
Chen, Siheng
,
Vachharajani, Vipul
,
Li, Pulin
in
Animals
,
Bioengineering
,
Body Patterning - genetics
2018
To translate insights in developmental biology into medical applications, techniques are needed to ensure correct cell localization. Morphogen gradients allow precise and highly reproducible pattern formation during development. Through in vitro experiments and modeling, Li et al. tested the effects of unusual properties of Hedgehog (HH) signaling. The HH morphogen's receptor, Patched (PTCH), sends an inhibitory signal when no ligand is bound, which is relieved by ligand binding. PTCH also regulates spatial distribution of the signal by sequestering the HH ligand. Furthermore, signaling through the receptor promotes synthesis of more inhibitory receptor. These characteristics help speed gradient formation and explain the robustness of the system to changes in the rate of morphogen production. Science , this issue p. 543 Insights from building a morphogen gradient in cell culture are discussed. In developing tissues, cells estimate their spatial position by sensing graded concentrations of diffusible signaling proteins called morphogens. Morphogen-sensing pathways exhibit diverse molecular architectures, whose roles in controlling patterning dynamics and precision have been unclear. In this work, combining cell-based in vitro gradient reconstitution, genetic rewiring, and mathematical modeling, we systematically analyzed the distinctive architectural features of the Sonic Hedgehog pathway. We found that the combination of double-negative regulatory logic and negative feedback through the PTCH receptor accelerates gradient formation and improves robustness to variation in the morphogen production rate compared with alternative designs. The ability to isolate morphogen patterning from concurrent developmental processes and to compare the patterning behaviors of alternative, rewired pathway architectures offers a powerful way to understand and engineer multicellular patterning.
Journal Article
Plant development. Integration of growth and patterning during vascular tissue formation in Arabidopsis
by
Ljung, Karin
,
Novák, Ondřej
,
Nijsse, Bart
in
Aminohydrolases
,
Arabidopsis - drug effects
,
Arabidopsis - genetics
2014
Coordination of cell division and pattern formation is central to tissue and organ development, particularly in plants where walls prevent cell migration. Auxin and cytokinin are both critical for division and patterning, but it is unknown how these hormones converge upon tissue development. We identify a genetic network that reinforces an early embryonic bias in auxin distribution to create a local, nonresponding cytokinin source within the root vascular tissue. Experimental and theoretical evidence shows that these cells act as a tissue organizer by positioning the domain of oriented cell divisions. We further demonstrate that the auxin-cytokinin interaction acts as a spatial incoherent feed-forward loop, which is essential to generate distinct hormonal response zones, thus establishing a stable pattern within a growing vascular tissue.
Journal Article
Dissecting the dynamics of signaling events in the BMP, WNT, and NODAL cascade during self-organized fate patterning in human gastruloids
by
Chhabra, Sapna
,
Liu, Lizhong
,
Kong, Xiangyu
in
Benzothiazoles - pharmacology
,
Bioengineering
,
Bioinformatics
2019
During gastrulation, the pluripotent epiblast self-organizes into the 3 germ layers-endoderm, mesoderm and ectoderm, which eventually form the entire embryo. Decades of research in the mouse embryo have revealed that a signaling cascade involving the Bone Morphogenic Protein (BMP), WNT, and NODAL pathways is necessary for gastrulation. In vivo, WNT and NODAL ligands are expressed near the site of gastrulation in the posterior of the embryo, and knockout of these ligands leads to a failure to gastrulate. These data have led to the prevailing view that a signaling gradient in WNT and NODAL underlies patterning during gastrulation; however, the activities of these pathways in space and time have never been directly observed. In this study, we quantify BMP, WNT, and NODAL signaling dynamics in an in vitro model of human gastrulation. Our data suggest that BMP signaling initiates waves of WNT and NODAL signaling activity that move toward the colony center at a constant rate. Using a simple mathematical model, we show that this wave-like behavior is inconsistent with a reaction-diffusion-based Turing system, indicating that there is no stable signaling gradient of WNT/NODAL. Instead, the final signaling state is homogeneous, and spatial differences arise only from boundary effects. We further show that the durations of WNT and NODAL signaling control mesoderm differentiation, while the duration of BMP signaling controls differentiation of CDX2-positive extra-embryonic cells. The identity of these extra-embryonic cells has been controversial, and we use RNA sequencing (RNA-seq) to obtain their transcriptomes and show that they closely resemble human trophoblast cells in vivo. The domain of BMP signaling is identical to the domain of differentiation of these trophoblast-like cells; however, neither WNT nor NODAL forms a spatial pattern that maps directly to the mesodermal region, suggesting that mesoderm differentiation is controlled dynamically by the combinatorial effect of multiple signals. We synthesize our data into a mathematical model that accurately recapitulates signaling dynamics and predicts cell fate patterning upon chemical and physical perturbations. Taken together, our study shows that the dynamics of signaling events in the BMP, WNT, and NODAL cascade in the absence of a stable signaling gradient control fate patterning of human gastruloids.
Journal Article
Self-organized Notch dynamics generate stereotyped sensory organ patterns in Drosophila
by
Schweisguth, François
,
Corson, Francis
,
Mazouni, Khalil
in
Animals
,
Bistability
,
Body Patterning - genetics
2017
Sensory hairs on the back of a fruit fly are lined up in neat rows. The orderliness of this arrangement has encouraged models based on organized specification of the hairs. Corson et al. now show that development is both less precise and more effective than that. They used mathematical modeling to recapitulate genetic effects as the developing epidermis becomes organized into enough rows and single lines of hairs. Their work suggests that the sensory field develops through self-organizing patterning that can adjust to the size of the epidermis. Science , this issue p. eaai7407 Distributed and flexible patterning combines with cell-cell interactions to establish rows of sensory bristles on the fly thorax. The emergence of spatial patterns in developing multicellular organisms relies on positional cues and cell-cell communication. Drosophila sensory organs have informed a paradigm in which these operate in two distinct steps: Prepattern factors drive localized proneural activity, then Notch-mediated lateral inhibition singles out neural precursors. Here we show that self-organization through Notch signaling also establishes the proneural stripes that resolve into rows of sensory bristles on the fly thorax. Patterning, initiated by a gradient of Delta ligand expression, progresses through inhibitory signaling between and within stripes. Thus, Notch signaling can support self-organized tissue patterning as a prepattern is transduced by cell-cell interactions into a refined arrangement of cellular fates.
Journal Article
Hindbrain induction and patterning during early vertebrate development
2019
The hindbrain is a key relay hub of the central nervous system (CNS), linking the bilaterally symmetric half-sides of lower and upper CNS centers via an extensive network of neural pathways. Dedicated neural assemblies within the hindbrain control many physiological processes, including respiration, blood pressure, motor coordination and different sensations. During early development, the hindbrain forms metameric segmented units known as rhombomeres along the antero-posterior (AP) axis of the nervous system. These compartmentalized units are highly conserved during vertebrate evolution and act as the template for adult brainstem structure and function. TALE and HOX homeodomain family transcription factors play a key role in the initial induction of the hindbrain and its specification into rhombomeric cell fate identities along the AP axis. Signaling pathways, such as canonical-Wnt, FGF and retinoic acid, play multiple roles to initially induce the hindbrain and regulate Hox gene-family expression to control rhombomeric identity. Additional transcription factors including Krox20, Kreisler and others act both upstream and downstream to Hox genes, modulating their expression and protein activity. In this review, we will examine the earliest embryonic signaling pathways that induce the hindbrain and subsequent rhombomeric segmentation via Hox and other gene expression. We will examine how these signaling pathways and transcription factors interact to activate downstream targets that organize the segmented AP pattern of the embryonic vertebrate hindbrain.
Journal Article
Discovery of a genetic module essential for assigning left-right asymmetry in humans and ancestral vertebrates
by
Louvel, G
,
National University Hospital [Singapore] (NUH)
,
Istanbul University
in
631/136/1455
,
631/208/1516
,
692/699/75
2022
The vertebrate left-right axis is specified during embryogenesis by a transient organ: the left-right organizer (LRO). Species including fish, amphibians, rodents and humans deploy motile cilia in the LRO to break bilateral symmetry, while reptiles, birds, even-toed mammals and cetaceans are believed to have LROs without motile cilia. We searched for genes whose loss during vertebrate evolution follows this pattern and identified five genes encoding extracellular proteins, including a putative protease with hitherto unknown functions that we named ciliated left-right organizer metallopeptide (CIROP). Here, we show that CIROP is specifically expressed in ciliated LROs. In zebrafish and Xenopus, CIROP is required solely on the left side, downstream of the leftward flow, but upstream of DAND5, the first asymmetrically expressed gene. We further ascertained 21 human patients with loss-of-function CIROP mutations presenting with recessive situs anomalies. Our findings posit the existence of an ancestral genetic module that has twice disappeared during vertebrate evolution but remains essential for distinguishing left from right in humans.
Journal Article
Cell competition corrects noisy Wnt morphogen gradients to achieve robust patterning in the zebrafish embryo
2019
Morphogen signalling forms an activity gradient and instructs cell identities in a signalling strength-dependent manner to pattern developing tissues. However, developing tissues also undergo dynamic morphogenesis, which may produce cells with unfit morphogen signalling and consequent noisy morphogen gradients. Here we show that a cell competition-related system corrects such noisy morphogen gradients. Zebrafish imaging analyses of the Wnt/β-catenin signalling gradient, which acts as a morphogen to establish embryonic anterior-posterior patterning, identify that unfit cells with abnormal Wnt/β-catenin activity spontaneously appear and produce noise in the gradient. Communication between unfit and neighbouring fit cells via cadherin proteins stimulates apoptosis of the unfit cells by activating Smad signalling and reactive oxygen species production. This unfit cell elimination is required for proper Wnt/β-catenin gradient formation and consequent anterior-posterior patterning. Because this gradient controls patterning not only in the embryo but also in adult tissues, this system may support tissue robustness and disease prevention.
Gradients of morphogens such as Wnt provide instructive cues for cell identities during development. Here, the authors report that in the developing zebrafish embryo, cell competition and elimination of unfit cells are required for proper Wnt gradient formation.
Journal Article
Spatiotemporal regulation of cell-cycle genes by SHORTROOT links patterning and growth
2010
Pattern and growth in plants
In higher animals and plants the processes of growth and patterning are coordinated. Much is known about the genes regulating patterning and many genes have been identified that are involved in cell-cycle control, but there are few instances in which a connection has been made between the two. A study of patterning in
Arabidopsis
root now shows that two key regulators of root-organ patterning directly control the transcription of specific components of the cell-cycle machinery. This demonstrates a direct link between developmental regulators, components of the cell-cycle machinery and organ patterning.
In higher animals and plants, the processes of growth and patterning are coordinated. In this study, the authors study patterning in
Arabidopsis
root and show that two key regulators of root organ patterning directly control the transcription of specific components of the cell-cycle machinery. This study provides a direct link between developmental regulators, components of the cell-cycle machinery and organ patterning.
The development of multicellular organisms relies on the coordinated control of cell divisions leading to proper patterning and growth
1
,
2
,
3
. The molecular mechanisms underlying pattern formation, particularly the regulation of formative cell divisions, remain poorly understood. In
Arabidopsis
, formative divisions generating the root ground tissue are controlled by SHORTROOT (SHR) and SCARECROW (SCR)
4
,
5
,
6
. Here we show, using cell-type-specific transcriptional effects of SHR and SCR combined with data from chromatin immunoprecipitation-based microarray experiments, that SHR regulates the spatiotemporal activation of specific genes involved in cell division. Coincident with the onset of a specific formative division, SHR and SCR directly activate a D-type cyclin; furthermore, altering the expression of this cyclin resulted in formative division defects. Our results indicate that proper pattern formation is achieved through transcriptional regulation of specific cell-cycle genes in a cell-type- and developmental-stage-specific context. Taken together, we provide evidence for a direct link between developmental regulators, specific components of the cell-cycle machinery and organ patterning.
Journal Article
Laser‐Induced Shockwaves as a Rapid and Non‐Contact Technique for 2D Patterning of Colloidal Monolayer Crystals
by
Park, Gyeongmin
,
Lee, Jaejun
,
Nguyen, Dien Kha Tu
in
2D patterning
,
Clusters
,
colloidal crystal
2024
A novel approach is reported that harnesses laser‐induced shockwave spallation technique to selectively remove clusters of polystyrene (PS) microspheres from close‐packed monolayers for the creation of 2D colloidal micropatterns. The strategic design of the layer structure by incorporating a thin layer of poly(vinyl alcohol) (PVA) on top of the PS monolayer enables the complete delamination of PS particle clusters. Its use is demonstrated for creating different sizes of circular microscale spallation patterns by regulating the tensile force of the shockwave with laser fluence adjustments. To further control the diameter of the spallation pattern, various shadow masks are utilized to tune the shockwave generation region. The finding reveals that both PVA thickness and spallation force play key roles in adjusting cluster spallation size with complete removal. The study highlights the potential of laser spallation techniques as a rapid and non‐contact method for 2D colloidal crystal patterning by leveraging spatially regulated shockwave spallation forces. A novel approach employing laser spallation techniques to pattern closely packed polystyrene (PS) microspheres is introduced. Laser‐induced shockwaves propagate through the sample, triggering the delamination of PS particles on the sample's rear side, resulting in micro‐hole patterns. The strategic use of a poly(vinyl alcohol) (PVA) layer facilitates complete PS/PVA delamination, forming clear patterns. Pattern size is controlled through laser fluence or shadow masks application.
Journal Article
Organoids by design
by
Wells, James M.
,
Takebe, Takanori
in
Body Patterning
,
Cell Differentiation
,
Embryonic Development
2019
Organoids are multicellular structures that can be derived from adult organs or pluripotent stem cells. Early versions of organoids range from simple epithelial structures to complex, disorganized tissues with large cellular diversity. The current challenge is to engineer cellular complexity into organoids in a controlled manner that results in organized assembly and acquisition of tissue function. These efforts have relied on studies of organ assembly during embryonic development and have resulted in the development of organoids with multilayer tissue complexity and higher-order functions. We discuss how the next generation of organoids can be designed by means of an engineering-based narrative design to control patterning, assembly, morphogenesis, growth, and function.
Journal Article