Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
15,342
result(s) for
"Peptide hormones"
Sort by:
Obestatin, a Peptide Encoded by the Ghrelin Gene, Opposes Ghrelin's Effects on Food Intake
by
Avsian-Kretchmer, Orna
,
Aaron J. W. Hsueh
,
Luo, Ching-Wei
in
Amino Acid Sequence
,
Analysis
,
Analytical, structural and metabolic biochemistry
2005
Ghrelin, a circulating appetite-inducing hormone, is derived from a prohormone by posttranslational processing. On the basis of the bioinformatic prediction that another peptide also derived from proghrelin exists, we isolated a hormone from rat stomach and named it obestatin-a contraction of obese, from the Latin \"obedere,\" meaning to devour, and \"statin,\" denoting suppression. Contrary to the appetite-stimulating effects of ghrelin, treatment of rats with obestatin suppressed food intake, inhibited jejunal contraction, and decreased body-weight gain. Obestatin bound to the orphan G protein-coupled receptor GPR39. Thus, two peptide hormones with opposing action in weight regulation are derived from the same ghrelin gene. After differential modification, these hormones activate distinct receptors.
Journal Article
A peptide hormone required for Casparian strip diffusion barrier formation in Arabidopsis roots
by
Matsubayashi, Yoshikatsu
,
Nakayama, Takuya
,
Shinohara, Hidefumi
in
Arabidopsis
,
Arabidopsis - metabolism
,
Arabidopsis Proteins - metabolism
2017
Plants achieve mineral ion homeostasis by means of a hydrophobic barrier on endodermal cells called the Casparian strip, which restricts lateral diffusion of ions between the root vascular bundles and the soil. We identified a family of sulfated peptides required for contiguous Casparian strip formation in Arabidopsis roots. These peptide hormones, which we named Casparian strip integrity factor 1 (CIF1) and CIF2, are expressed in the root stele and specifically bind the endodermis-expressed leucine-rich repeat receptor kinase GASSHO1 (GSO1)/SCHENGEN3 and its homolog, GSO2. A mutant devoid of CIF peptides is defective in ion homeostasis in the xylem. CIF genes are environmentally responsive. Casparian strip regulation is not merely a passive process driven by root developmental cues; it also serves as an active strategy to cope with adverse soil conditions.
Journal Article
Asprosin is a centrally acting orexigenic hormone
2017
Asprosin, a recently identified secreted hormone from adipose tissue, acts centrally to promote food intake.
Asprosin is a recently discovered fasting-induced hormone that promotes hepatic glucose production. Here we demonstrate that asprosin in the circulation crosses the blood–brain barrier and directly activates orexigenic AgRP
+
neurons via a cAMP-dependent pathway. This signaling results in inhibition of downstream anorexigenic proopiomelanocortin (POMC)-positive neurons in a GABA-dependent manner, which then leads to appetite stimulation and a drive to accumulate adiposity and body weight. In humans, a genetic deficiency in asprosin causes a syndrome characterized by low appetite and extreme leanness; this is phenocopied by mice carrying similar mutations and can be fully rescued by asprosin. Furthermore, we found that obese humans and mice had pathologically elevated concentrations of circulating asprosin, and neutralization of asprosin in the blood with a monoclonal antibody reduced appetite and body weight in obese mice, in addition to improving their glycemic profile. Thus, in addition to performing a glucogenic function, asprosin is a centrally acting orexigenic hormone that is a potential therapeutic target in the treatment of both obesity and diabetes.
Journal Article
Phoenixin-14: detection and novel physiological implications in cardiac modulation and cardioprotection
2018
Phoenixin-14 (PNX) is a newly identified peptide co-expressed in the hypothalamus with the anorexic and cardioactive Nesfatin-1. Like Nesfatin-1, PNX is able to cross the blood–brain barrier and this suggests a role in peripheral modulation. Preliminary mass spectrography data indicate that, in addition to the hypothalamus, PNX is present in the mammalian heart. This study aimed to quantify PNX expression in the rat heart, and to evaluate whether the peptide influences the myocardial function under basal condition and in the presence of ischemia/reperfusion (I/R). By ELISA the presence of PNX was detected in both hypothalamus and heart. In plasma of normal, but not of obese rats, the peptide concentrations increased after meal. Exposure of the isolated and Langendorff perfused rat heart to exogenous PNX induces a reduction of contractility and relaxation, without effects on coronary pressure and heart rate. As revealed by immunoblotting, these effects were accompanied by an increase of Erk1/2, Akt and eNOS phosphorylation. PNX (EC
50
dose), administered after ischemia, induced post-conditioning-like cardioprotection. This was revealed by a smaller infarct size and a better systolic recovery with respect to those detected on hearts exposed to I/R alone. The peptide also activates the cardioprotective RISK and SAFE cascades and inhibits apoptosis. These effects were also observed in the heart of obese rats. Our data provide a first evidence on the peripheral activity of PNX and on its direct cardiomodulatory and cardioprotective role under both normal conditions and in the presence of metabolic disorders.
Journal Article
Allosteric receptor activation by the plant peptide hormone phytosulfokine
2015
Insights derived from the crystal structures of the extracellular domain of PSKR, the receptor for the plant hormone phytosulfokine (PSK) that affects plant growth and development, reveal that PSK interacts with PSKR and enhances PSKR interaction with its co-receptor SERK allosterically.
Mode of action of phytosulfokine
The plant hormone phytosulfokine (PSK) affects plant growth and development by binding to PSKR, a leucine-rich repeat receptor kinase. How it recognizes and activates PSKR remains unclear. Jijie Chai and colleagues have determined the crystal structures of the extracellular domain of PSKR in free, PSK-bound and co-receptor-bound forms. The structures and supporting evidence reveal that when PSK interacts with PSKR it enhances the interaction between PSKR and its co-receptor SERK. Intriguingly, PSK is not directly involved in the PSKR–SERK interaction; rather it acts allosterically to stabilize a domain within PSKR that can recruit a SERK. This work could provide a basis for the design of PSKR-specific small molecules.
Phytosulfokine (PSK) is a disulfated pentapeptide that has a ubiquitous role in plant growth and development
1
,
2
. PSK is perceived by its receptor PSKR
3
,
4
, a leucine-rich repeat receptor kinase (LRR-RK). The mechanisms underlying the recognition of PSK, the activation of PSKR and the identity of the components downstream of the initial binding remain elusive. Here we report the crystal structures of the extracellular LRR domain of PSKR in free, PSK- and co-receptor-bound forms. The structures reveal that PSK interacts mainly with a β-strand from the island domain of PSKR, forming an anti-β-sheet. The two sulfate moieties of PSK interact directly with PSKR, sensitizing PSKR recognition of PSK. Supported by biochemical, structural and genetic evidence, PSK binding enhances PSKR heterodimerization with the somatic embryogenesis receptor-like kinases (SERKs). However, PSK is not directly involved in PSKR–SERK interaction but stabilizes PSKR island domain for recruitment of a SERK. Our data reveal the structural basis for PSKR recognition of PSK and allosteric activation of PSKR by PSK, opening up new avenues for the design of PSKR-specific small molecules.
Journal Article
Anxiety, Depression, and the Microbiome: A Role for Gut Peptides
by
Dinan, Timothy G.
,
Schellekens, Harriet
,
Lach, Gilliard
in
Anxiety
,
Anxiety - metabolism
,
Anxiety - microbiology
2018
The complex bidirectional communication between the gut and the brain is finely orchestrated by different systems, including the endocrine, immune, autonomic, and enteric nervous systems. Moreover, increasing evidence supports the role of the microbiome and microbiota-derived molecules in regulating such interactions; however, the mechanisms underpinning such effects are only beginning to be resolved. Microbiota–gut peptide interactions are poised to be of great significance in the regulation of gut–brain signaling. Given the emerging role of the gut–brain axis in a variety of brain disorders, such as anxiety and depression, it is important to understand the contribution of bidirectional interactions between peptide hormones released from the gut and intestinal bacteria in the context of this axis. Indeed, the gastrointestinal tract is the largest endocrine organ in mammals, secreting dozens of different signaling molecules, including peptides. Gut peptides in the systemic circulation can bind cognate receptors on immune cells and vagus nerve terminals thereby enabling indirect gut–brain communication. Gut peptide concentrations are not only modulated by enteric microbiota signals, but also vary according to the composition of the intestinal microbiota. In this review, we will discuss the gut microbiota as a regulator of anxiety and depression, and explore the role of gut-derived peptides as signaling molecules in microbiome–gut–brain communication. Here, we summarize the potential interactions of the microbiota with gut hormones and endocrine peptides, including neuropeptide Y, peptide YY, pancreatic polypeptide, cholecystokinin, glucagon-like peptide, corticotropin-releasing factor, oxytocin, and ghrelin in microbiome-to-brain signaling. Together, gut peptides are important regulators of microbiota–gut–brain signaling in health and stress-related psychiatric illnesses.
Journal Article
Melatonin as a Hormone: New Physiological and Clinical Insights
2018
Abstract
Melatonin is a ubiquitous molecule present in almost every live being from bacteria to humans. In vertebrates, besides being produced in peripheral tissues and acting as an autocrine and paracrine signal, melatonin is centrally synthetized by a neuroendocrine organ, the pineal gland. Independently of the considered species, pineal hormone melatonin is always produced during the night and its production and secretory episode duration are directly dependent on the length of the night. As its production is tightly linked to the light/dark cycle, melatonin main hormonal systemic integrative action is to coordinate behavioral and physiological adaptations to the environmental geophysical day and season. The circadian signal is dependent on its daily production regularity, on the contrast between day and night concentrations, and on specially developed ways of action. During its daily secretory episode, melatonin coordinates the night adaptive physiology through immediate effects and primes the day adaptive responses through prospective effects that will only appear at daytime, when melatonin is absent. Similarly, the annual history of the daily melatonin secretory episode duration primes the central nervous/endocrine system to the seasons to come. Remarkably, maternal melatonin programs the fetuses' behavior and physiology to cope with the environmental light/dark cycle and season after birth. These unique ways of action turn melatonin into a biological time-domain-acting molecule. The present review focuses on the above considerations, proposes a putative classification of clinical melatonin dysfunctions, and discusses general guidelines to the therapeutic use of melatonin.
Journal Article
Functional Amyloids As Natural Storage of Peptide Hormones in Pituitary Secretory Granules
by
Maji, Samir K
,
Vale, Wylie
,
Riek, Roland
in
Adrenocorticotropic Hormone - chemistry
,
Adrenocorticotropic Hormone - metabolism
,
Adult and adolescent clinical studies
2009
Amyloids are highly organized cross-β-sheet-rich protein or peptide aggregates that are associated with pathological conditions including Alzheimer's disease and type II diabetes. However, amyloids may also have a normal biological function, as demonstrated by fungal prions, which are involved in prion replication, and the amyloid protein Pmel17, which is involved in mammalian skin pigmentation. We found that peptide and protein hormones in secretory granules of the endocrine system are stored in an amyloid-like cross-β-sheet-rich conformation. Thus, functional amyloids in the pituitary and other organs can contribute to normal cell and tissue physiology.
Journal Article
Processing of a plant peptide hormone precursor facilitated by posttranslational tyrosine sulfation
by
Royek, Stefanie
,
Stintzia, Annick
,
Bayer, Martin
in
Arabidopsis - genetics
,
Arabidopsis - metabolism
,
Arabidopsis Proteins - genetics
2022
Most peptide hormones and growth factors are matured from larger inactive precursor proteins by proteolytic processing and further posttranslational modification. Whether or how posttranslational modifications contribute to peptide bioactivity is still largely unknown. We address this question here for TWS1 (Twisted Seed 1), a peptide regulator of embryonic cuticle formation in Arabidopsis thaliana. Using synthetic peptides encompassing the N- and C-terminal processing sites and the recombinant TWS1 precursor as substrates, we show that the precursor is cleaved by the subtilase SBT1.8 at both the N and the C termini of TWS1. Recognition and correct processing at the N-terminal site depended on sulfation of an adjacent tyrosine residue. Arginine 302 of SBT1.8 was found to be required for sulfotyrosine binding and for accurate processing of the TWS1 precursor. The data reveal a critical role for posttranslational modification, here tyrosine sulfation of a plant peptide hormone precursor, in mediating processing specificity and peptide maturation.
Journal Article
Endocrine Regulation of Energy Metabolism: Review of Pathobiochemical and Clinical Chemical Aspects of Leptin, Ghrelin, Adiponectin, and Resistin
2004
Background: Recent studies point to the adipose tissue as a highly active endocrine organ secreting a range of hormones. Leptin, ghrelin, adiponectin, and resistin are considered to take part in the regulation of energy metabolism.
Approach: This review summarizes recent knowledge on leptin and its receptor and on ghrelin, adiponectin, and resistin, and emphasizes their roles in pathobiochemistry and clinical chemistry.
Content: Leptin, adiponectin, and resistin are produced by the adipose tissue. The protein leptin, a satiety hormone, regulates appetite and energy balance of the body. Adiponectin could suppress the development of atherosclerosis and liver fibrosis and might play a role as an antiinflammatory hormone. Increased resistin concentrations might cause insulin resistance and thus could link obesity with type II diabetes. Ghrelin is produced in the stomach. In addition to its role in long-term regulation of energy metabolism, it is involved in the short-term regulation of feeding. These hormones have important roles in energy homeostasis, glucose and lipid metabolism, reproduction, cardiovascular function, and immunity. They directly influence other organ systems, including the brain, liver, and skeletal muscle, and are significantly regulated by nutritional status. This newly discovered secretory function has extended the biological relevance of adipose tissue, which is no longer considered as only an energy storage site.
Summary: The functional roles, structures, synthesis, analytical aspects, and clinical significance of leptin, ghrelin, adiponectin, and resistin are summarized.
Journal Article