Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
90,496 result(s) for "Peptides - chemistry"
Sort by:
Accurate secondary structure prediction and fold recognition for circular dichroism spectroscopy
Circular dichroism (CD) spectroscopy is a widely used technique for the study of protein structure. Numerous algorithms have been developed for the estimation of the secondary structure composition from the CD spectra. These methods often fail to provide acceptable results on α/β-mixed or β-structure–rich proteins. The problem arises from the spectral diversity of β-structures, which has hitherto been considered as an intrinsic limitation of the technique. The predictions are less reliable for proteins of unusual β-structures such as membrane proteins, protein aggregates, and amyloid fibrils. Here, we show that the parallel/antiparallel orientation and the twisting of the β-sheets account for the observed spectral diversity. We have developed a method called β-structure selection (BeStSel) for the secondary structure estimation that takes into account the twist of β-structures. This method can reliably distinguish parallel and antiparallel β-sheets and accurately estimates the secondary structure for a broad range of proteins. Moreover, the secondary structure components applied by the method are characteristic to the protein fold, and thus the fold can be predicted to the level of topology in the CATH classification from a single CD spectrum. By constructing a web server, we offer a general tool for a quick and reliable structure analysis using conventional CD or synchrotron radiation CD (SRCD) spectroscopy for the protein science research community. The method is especially useful when X-ray or NMR techniques fail. Using BeStSel on data collected by SRCD spectroscopy, we investigated the structure of amyloid fibrils of various disease-related proteins and peptides. Significance Circular dichroism (CD) spectroscopy is widely used for protein secondary structure analysis. However, quantitative estimation for β-sheet–containing proteins is problematic due to the huge morphological and spectral diversity of β-structures. We show that parallel/antiparallel orientation and twisting of β-sheets account for the observed spectral diversity. Taking into account the twist of β-structures, our method accurately estimates the secondary structure for a broad range of protein folds, particularly for β-sheet–rich proteins and amyloid fibrils. Moreover, the method can predict the protein fold down to the topology level following the CATH classification. We provide a general tool for a quick and reliable structure analysis using conventional or synchrotron radiation CD spectroscopy, which is especially useful when X-ray or NMR techniques fail.
Antibiofilm activity of host defence peptides: complexity provides opportunities
Host defence peptides (HDPs) are integral components of innate immunity across all living organisms. These peptides can exert direct antibacterial effects, targeting planktonic cells (referred to as antimicrobial peptides), and exhibit antibiofilm (referred to as antibiofilm peptides), antiviral, antifungal and host-directed immunomodulatory activities. In this Review, we discuss how the complex functional attributes of HDPs provide many opportunities for the development of antimicrobial therapeutics, focusing particularly on their emerging antibiofilm properties. The mechanisms of action of antibiofilm peptides are compared and contrasted with those of antimicrobial peptides. Furthermore, obstacles for the practical translation of candidate peptides into therapeutics and the potential solutions are discussed. Critically, HDPs have the value-added assets of complex functional attributes, particularly antibiofilm and anti-inflammatory activities and their synergy with conventional antibiotics.In this Review, Hancock, Alford and Haney discuss how the complex functional attributes of host defence peptides provide many opportunities for the development of antimicrobial therapeutics, focusing on their emerging antibiofilm properties.
Frog-derived synthetic peptides display anti-infective activity against Gram-negative pathogens
Peptides from frogs are promising antibiotic candidates.Frog-derived synthetic peptides selectively targeted Gram-negative pathogens, sparing beneficial microbiota and human cells.Structure-guided modifications improved the antimicrobial potency by optimizing hydrophobicity and net charge.Lead peptides effectively reduced bacterial loads in murine models of Pseudomonas aeruginosa and Acinetobacter baumannii infections without toxicity. Novel antibiotics are urgently needed since bacteria are becoming increasingly resistant to existing antimicrobial drugs. Furthermore, available antibiotics are broad spectrum, often causing off-target effects on host cells and the beneficial microbiome. To overcome these limitations, we used structure-guided design to generate synthetic peptides derived from Andersonin-D1, an antimicrobial peptide (AMP) produced by the odorous frog Odorrana andersonii. We found that both hydrophobicity and net charge were critical for its bioactivity, enabling the design of novel, optimized synthetic peptides. These peptides selectively targeted Gram-negative pathogens in single cultures and complex microbial consortia, showed no off-target effects on human cells or beneficial gut microbes, and did not select for bacterial resistance. Notably, they also exhibited in vivo activity in two preclinical murine models. Overall, we present synthetic peptides that selectively target pathogenic infections and offer promising preclinical antibiotic candidates. [Display omitted] Synthetic peptides, inspired by the natural defenses of amphibians, demonstrate selective activity against Gram-negative pathogens while sparing the gut microbiota and Gram-positive strains. Rationally designed peptides showed remarkable potency, exhibiting no signs of resistance or toxicity. These results underscore the potential of peptide-based antibiotics to tackle multidrug-resistant bacterial infections. Peptides represent highly promising scaffolds for drug development, offering tunable properties and versatility regarding their targets. Synthetic peptides are at the forefront of innovation in combating antibiotic resistance due to their modular nature, which enables precise design optimization. Currently in the preclinical phase [Technology Readiness Level (TRL) 3 or 4], these peptide molecules have shown robust efficacy in both in vitro and animal models, underscoring their potential as next-generation therapeutics. Recent advancements in rational peptide design, enhanced by machine learning and structure-guided approaches, are significantly improving antimicrobial peptide (AMP) potency, stability, and selectivity. Narrow-spectrum AMPs, designed to target specific pathogens, not only reduce the risk of antimicrobial resistance, but also help preserve the microbiome. Furthermore, consortia-based experiments evaluating peptides in complex bacterial communities are refining their application against multidrug-resistant infections. With continuous investment and technological innovation, AMPs are on track to enter clinical trials within the next decade. Addressing scalability and regulatory challenges will be critical to unlocking their full potential as precision-based therapies, ultimately providing an adaptable and effective solution for tackling resistant infections.
Enhancing Antimicrobial Peptide Activity through Modifications of Charge, Hydrophobicity, and Structure
Antimicrobial peptides (AMPs) are emerging as a promising alternative to traditional antibiotics due to their ability to disturb bacterial membranes and/or their intracellular processes, offering a potential solution to the growing problem of antimicrobial resistance. AMP effectiveness is governed by factors such as net charge, hydrophobicity, and the ability to form amphipathic secondary structures. When properly balanced, these characteristics enable AMPs to selectively target bacterial membranes while sparing eukaryotic cells. This review focuses on the roles of positive charge, hydrophobicity, and structure in influencing AMP activity and toxicity, and explores strategies to optimize them for enhanced therapeutic potential. We highlight the delicate balance between these properties and how various modifications, including amino acid substitutions, peptide tagging, or lipid conjugation, can either enhance or impair AMP performance. Notably, an increase in these parameters does not always yield the best results; sometimes, a slight reduction in charge, hydrophobicity, or structural stability improves the overall AMP therapeutic potential. Understanding these complex interactions is key to developing AMPs with greater antimicrobial activity and reduced toxicity, making them viable candidates in the fight against antibiotic-resistant bacteria.
Peptide dimer structure in an Aβ(1–42) fibril visualized with cryo-EM
Alzheimer’s disease (AD) is a fatal neurodegenerative disorder in humans and the main cause of dementia in aging societies. The disease is characterized by the aberrant formation of β-amyloid (Aβ) peptide oligomers and fibrils. These structures may damage the brain and give rise to cerebral amyloid angiopathy, neuronal dysfunction, and cellular toxicity. Although the connection between AD and Aβ fibrillation is extensively documented, much is still unknown about the formation of these Aβ aggregates and their structures at the molecular level. Here, we combined electron cryomicroscopy, 3D reconstruction, and integrative structural modeling methods to determine the molecular architecture of a fibril formed by Aβ(1–42), a particularly pathogenic variant of Aβ peptide. Our model reveals that the individual layers of the Aβ fibril are formed by peptide dimers with face-to-face packing. The two peptides forming the dimer possess identical tilde-shaped conformations and interact with each other by packing of their hydrophobic C-terminal β-strands. The peptide C termini are located close to the main fibril axis, where they produce a hydrophobic core and are surrounded by the structurally more flexible and charged segments of the peptide N termini. The observed molecular architecture is compatible with the general chemical properties of Aβ peptide and provides a structural basis for various biological observations that illuminate the molecular underpinnings of AD. Moreover, the structure provides direct evidence for a steric zipper within a fibril formed by full-length Aβ peptide.
Membrane Active Peptides and Their Biophysical Characterization
In the last 20 years, an increasing number of studies have been reported on membrane active peptides. These peptides exert their biological activity by interacting with the cell membrane, either to disrupt it and lead to cell lysis or to translocate through it to deliver cargos into the cell and reach their target. Membrane active peptides are attractive alternatives to currently used pharmaceuticals and the number of antimicrobial peptides (AMPs) and peptides designed for drug and gene delivery in the drug pipeline is increasing. Here, we focus on two most prominent classes of membrane active peptides; AMPs and cell-penetrating peptides (CPPs). Antimicrobial peptides are a group of membrane active peptides that disrupt the membrane integrity or inhibit the cellular functions of bacteria, virus, and fungi. Cell penetrating peptides are another group of membrane active peptides that mainly function as cargo-carriers even though they may also show antimicrobial activity. Biophysical techniques shed light on peptide–membrane interactions at higher resolution due to the advances in optics, image processing, and computational resources. Structural investigation of membrane active peptides in the presence of the membrane provides important clues on the effect of the membrane environment on peptide conformations. Live imaging techniques allow examination of peptide action at a single cell or single molecule level. In addition to these experimental biophysical techniques, molecular dynamics simulations provide clues on the peptide–lipid interactions and dynamics of the cell entry process at atomic detail. In this review, we summarize the recent advances in experimental and computational investigation of membrane active peptides with particular emphasis on two amphipathic membrane active peptides, the AMP melittin and the CPP pVEC.
Antimicrobial Peptides towards Clinical Application—A Long History to Be Concluded
Antimicrobial peptides (AMPs) are molecules with an amphipathic structure that enables them to interact with bacterial membranes. This interaction can lead to membrane crossing and disruption with pore formation, culminating in cell death. They are produced naturally in various organisms, including humans, animals, plants and microorganisms. In higher animals, they are part of the innate immune system, where they counteract infection by bacteria, fungi, viruses and parasites. AMPs can also be designed de novo by bioinformatic approaches or selected from combinatorial libraries, and then produced by chemical or recombinant procedures. Since their discovery, AMPs have aroused interest as potential antibiotics, although few have reached the market due to stability limits or toxicity. Here, we describe the development phase and a number of clinical trials of antimicrobial peptides. We also provide an update on AMPs in the pharmaceutical industry and an overall view of their therapeutic market. Modifications to peptide structures to improve stability in vivo and bioavailability are also described.
An Effector Peptide Family Required for Drosophila Toll-Mediated Immunity
In Drosophila melanogaster, recognition of an invading pathogen activates the Toll or Imd signaling pathway, triggering robust upregulation of innate immune effectors. Although the mechanisms of pathogen recognition and signaling are now well understood, the functions of the immune-induced transcriptome and proteome remain much less well characterized. Through bioinformatic analysis of effector gene sequences, we have defined a family of twelve genes - the Bomanins (Boms) - that are specifically induced by Toll and that encode small, secreted peptides of unknown biochemical activity. Using targeted genome engineering, we have deleted ten of the twelve Bom genes. Remarkably, inactivating these ten genes decreases survival upon microbial infection to the same extent, and with the same specificity, as does eliminating Toll pathway function. Toll signaling, however, appears unaffected. Assaying bacterial load post-infection in wild-type and mutant flies, we provide evidence that the Boms are required for resistance to, rather than tolerance of, infection. In addition, by generating and assaying a deletion of a smaller subset of the Bom genes, we find that there is overlap in Bom activity toward particular pathogens. Together, these studies deepen our understanding of Toll-mediated immunity and provide a new in vivo model for exploration of the innate immune effector repertoire.
Multiple Antimicrobial Effects of Hybrid Peptides Synthesized Based on the Sequence of Ribosomal S1 Protein from Staphylococcus aureus
The need to develop new antimicrobial peptides is due to the high resistance of pathogenic bacteria to traditional antibiotics now and in the future. The creation of synthetic peptide constructs is a common and successful approach to the development of new antimicrobial peptides. In this work, we use a simple, flexible, and scalable technique to create hybrid antimicrobial peptides containing amyloidogenic regions of the ribosomal S1 protein from Staphylococcus aureus. While the cell-penetrating peptide allows the peptide to enter the bacterial cell, the amyloidogenic site provides an antimicrobial effect by coaggregating with functional bacterial proteins. We have demonstrated the antimicrobial effects of the R23F, R23DI, and R23EI hybrid peptides against Staphylococcus aureus, methicillin-resistant S. aureus (MRSA), Pseudomonas aeruginosa, Escherichia coli, and Bacillus cereus. R23F, R23DI, and R23EI can be used as antimicrobial peptides against Gram-positive and Gram-negative bacteria resistant to traditional antibiotics.
A self-destructive nanosweeper that captures and clears amyloid β-peptides
Cerebral amyloid β-peptide (Aβ) accumulation resulting from an imbalance between Aβ production and clearance is one of the most important causes in the formation of Alzheimer’s disease (AD). In order to preserve the maintenance of Aβ homeostasis and have a notable AD therapy, achieving a method to clear up Aβ plaques becomes an emerging task. Herein, we describe a self-destructive nanosweeper based on multifunctional peptide-polymers that is capable of capturing and clearing Aβ for the effective treatment of AD. The nanosweeper recognize and bind Aβ via co-assembly through hydrogen bonding interactions. The Aβ-loaded nanosweeper enters cells and upregulates autophagy thus promoting the degradation of Aβ. As a result, the nanosweeper decreases the cytotoxicity of Aβ and rescues memory deficits of AD transgenic mice. We believe that this resourceful and synergistic approach has valuable potential as an AD treatment strategy. Cerebral amyloid β-peptide accumulation is a causative factor in Alzheimer’s Disease. Here the authors design a 'nanosweeper' that binds amyloid β-peptide and induces autophagy to clear the accumulated plagues.