Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
162 result(s) for "Peptidyl-Dipeptidase A - biosynthesis"
Sort by:
A mechanistic model and therapeutic interventions for COVID-19 involving a RAS-mediated bradykinin storm
Neither the disease mechanism nor treatments for COVID-19 are currently known. Here, we present a novel molecular mechanism for COVID-19 that provides therapeutic intervention points that can be addressed with existing FDA-approved pharmaceuticals. The entry point for the virus is ACE2, which is a component of the counteracting hypotensive axis of RAS. Bradykinin is a potent part of the vasopressor system that induces hypotension and vasodilation and is degraded by ACE and enhanced by the angiotensin 1-9 produced by ACE2. Here, we perform a new analysis on gene expression data from cells in bronchoalveolar lavage fluid (BALF) from COVID-19 patients that were used to sequence the virus. Comparison with BALF from controls identifies a critical imbalance in RAS represented by decreased expression of ACE in combination with increases in ACE2, renin, angiotensin, key RAS receptors, kinogen and many kallikrein enzymes that activate it, and both bradykinin receptors. This very atypical pattern of the RAS is predicted to elevate bradykinin levels in multiple tissues and systems that will likely cause increases in vascular dilation, vascular permeability and hypotension. These bradykinin-driven outcomes explain many of the symptoms being observed in COVID-19. In late 2019, a new virus named SARS-CoV-2, which causes a disease in humans called COVID-19, emerged in China and quickly spread around the world. Many individuals infected with the virus develop only mild, symptoms including a cough, high temperature and loss of sense of smell; while others may develop no symptoms at all. However, some individuals develop much more severe, life-threatening symptoms affecting the lungs and other parts of the body including the heart and brain. SARS-CoV-2 uses a human enzyme called ACE2 like a ‘Trojan Horse’ to sneak into the cells of its host. ACE2 lowers blood pressure in the human body and works against another enzyme known as ACE (which has the opposite effect). Therefore, the body has to balance the levels of ACE and ACE2 to maintain a normal blood pressure. It remains unclear whether SARS-CoV-2 affects how ACE2 and ACE work. When COVID-19 first emerged, a team of researchers in China studied fluid and cells collected from the lungs of patients to help them identify the SARS-CoV-2 virus. Here, Garvin et al. analyzed the data collected in the previous work to investigate whether changes in how the body regulates blood pressure may contribute to the life-threatening symptoms of COVID-19. The analyses found that SARS-CoV-2 caused the levels of ACE in the lung cells to decrease, while the levels of ACE2 increased. This in turn increased the levels of a molecule known as bradykinin in the cells (referred to as a ‘Bradykinin Storm’). . Previous studies have shown that bradykinin induces pain and causes blood vessels to expand and become leaky which will lead to swelling and inflammation of the surrounding tissue. In addition, the analyses found that production of a substance called hyaluronic acid was increased and the enzymes that could degrade it greatly decreased. Hyaluronic acid can absorb more than 1,000 times its own weight in water to form a hydrogel. The Bradykinin-Storm-induced leakage of fluid into the lungs combined with the excess hyaluronic acid would likely result in a Jello-like substance that is preventing oxygen uptake and carbon dioxide release in the lungs of severely affected COVID-19 patients. Therefore, the findings of Garvin et al. suggest that the Bradykinin Storm may be responsible for the more severe symptoms of COVID-19. Further experiments identified several existing medicinal drugs that have the potential to be re-purposed to treat the Bradykinin Storm. A possible next step would be to carry out clinical trials to assess how effective these drugs are in treating patients with COVID-19. In addition, understanding how SARS-Cov-2 affects the body will help researchers and clinicians identify individuals who are most at risk of developing life-threatening symptoms.
Angiotensin-converting enzyme 2 protects from lethal avian influenza A H5N1 infections
The potential for avian influenza H5N1 outbreaks has increased in recent years. Thus, it is paramount to develop novel strategies to alleviate death rates. Here we show that avian influenza A H5N1-infected patients exhibit markedly increased serum levels of angiotensin II. High serum levels of angiotensin II appear to be linked to the severity and lethality of infection, at least in some patients. In experimental mouse models, infection with highly pathogenic avian influenza A H5N1 virus results in downregulation of angiotensin-converting enzyme 2 (ACE2) expression in the lung and increased serum angiotensin II levels. Genetic inactivation of ACE2 causes severe lung injury in H5N1-challenged mice, confirming a role of ACE2 in H5N1-induced lung pathologies. Administration of recombinant human ACE2 ameliorates avian influenza H5N1 virus-induced lung injury in mice. Our data link H5N1 virus-induced acute lung failure to ACE2 and provide a potential treatment strategy to address future flu pandemics. H5N1 avian influenza viruses can be highly pathogenic. Here, the authors show that H5N1 infection leads to increased serum levels of angiotensin II in patients and mice, and that administration of angiotensin-converting enzyme 2 ameliorates lung injury in infected mice.
SARS-CoV-2 can infect the placenta and is not associated with specific placental histopathology: a series of 19 placentas from COVID-19-positive mothers
Congenital infection of SARS-CoV-2 appears to be exceptionally rare despite many cases of COVID-19 during pregnancy. Robust proof of placental infection requires demonstration of viral localization within placental tissue. Only two of the few cases of possible vertical transmission have demonstrated placental infection. None have shown placental expression of the ACE2 or TMPRSS2 protein, both required for viral infection. We examined 19 COVID-19 exposed placentas for histopathologic findings, and for expression of ACE2, and TMPRSS2 by immunohistochemistry. Direct placental SARS-CoV-2 expression was studied by two methods—nucleocapsid protein expression by immunohistochemistry, and RNA expression by in situ hybridization. ACE2 membranous expression in the syncytiotrophoblast (ST) of the chorionic villi is predominantly in a polarized pattern with expression highest on the stromal side of the ST. In addition, cytotrophoblast and extravillous trophoblast express ACE2. No ACE2 expression was detected in villous stroma, Hofbauer cells, or endothelial cells. TMPRSS2 expression was only present weakly in the villous endothelium and rarely in the ST. In 2 of 19 cases, SARS-CoV-2 RNA was present in the placenta focally in the ST and cytotrophoblast. There was no characteristic histopathology present in our cases including the two placental infections. We found that the placenta is capable of being infected but that this event is rare. We propose one explanation could be the polarized expression of ACE2 away from the maternal blood and pronounced paucity of TMPRSS2 expression in trophoblast.
Genetic alteration, RNA expression, and DNA methylation profiling of coronavirus disease 2019 (COVID-19) receptor ACE2 in malignancies: a pan-cancer analysis
The novel coronavirus (2019-nCoV) is an emerging causative agent that was first described in late December 2019 and causes a severe respiratory infection in humans. Notably, many of affected patients of COVID-19 were people with malignancies. Moreover, cancer has been identified as an individual risk factor for COVID-19. In addition, the expression of angiotensin converting enzyme 2 (ACE2), the receptor of COVID-19, were aberrantly expressed in many tumors. However, a systematic analysis of ACE2 aberration remained to be elucidated in human cancers. Here, we analyzed genetic alteration, RNA expression, and DNA methylation of ACE2 across over 30 tumors. Notably, overexpression of ACE2 have been observed in including colon adenocarcinoma (COAD), kidney renal papillary cell carcinoma (KIRP), pancreatic adenocarcinoma (PAAD), rectum adenocarcinoma (READ), stomach adenocarcinoma (STAD), and lung adenocarcinoma (LUAD). In addition, hypo DNA methylation of ACE2 has also been identified in most of these ACE2 highly expressed tumors. Conclusively, our study for the first time curated both genetic and epigenetic variations of ACE2 in human malignancies. Notably, because our study is a bioinformatics assay, further functional and clinical validation is warranted.
Analysis of the susceptibility of lung cancer patients to SARS-CoV-2 infection
Recent studies have reported that COVID-19 patients with lung cancer have a higher risk of severe events than patients without cancer. In this study, we investigated the gene expression of angiotensin I-converting enzyme 2 (ACE2) and transmembrane serine protease 2 (TMPRSS2) with prognosis in lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC). Lung cancer patients in each age stage, subtype, and pathological stage are susceptible to SARS-CoV-2 infection, except for the primitive subtype of LUSC. LUAD patients are more susceptible to SARS-CoV-2 infection than LUSC patients. The findings are unanimous on tissue expression in gene and protein levels.
Bioinformatic characterization of angiotensin-converting enzyme 2, the entry receptor for SARS-CoV-2
The World Health Organization declared the COVID-19 epidemic a public health emergency of international concern on March 11th, 2020, and the pandemic is rapidly spreading worldwide. COVID-19 is caused by a novel coronavirus SARS-CoV-2, which enters human target cells via angiotensin converting enzyme 2 (ACE2). We used a number of bioinformatics tools to computationally characterize ACE2 by determining its cell-specific expression in trachea, lung, and small intestine, derive its putative functions, and predict transcriptional regulation. The small intestine expressed higher levels of ACE2 mRNA than any other organ. By immunohistochemistry, duodenum, kidney and testis showed strong signals, whereas the signal was weak in the respiratory tract. Single cell RNA-Seq data from trachea indicated positive signals along the respiratory tract in key protective cell types including club, goblet, proliferating, and ciliary epithelial cells; while in lung the ratio of ACE2-expressing cells was low in all cell types (<2.6%), but was highest in vascular endothelial and goblet cells. Gene ontology analysis suggested that, besides its classical role in the renin-angiotensin system, ACE2 may be functionally associated with angiogenesis/blood vessel morphogenesis. Using a novel tool for the prediction of transcription factor binding sites we identified several putative binding sites within two tissue-specific promoters of the ACE2 gene as well as a new putative short form of ACE2. These include several interferon-stimulated response elements sites for STAT1, IRF8, and IRF9. Our results also confirmed that age and gender play no significant role in the regulation of ACE2 mRNA expression in the lung.
Class A scavenger receptor MARCO negatively regulates Ace expression and aldosterone production
Aldosterone is a potent cholesterol-derived steroid hormone that plays a major role in controlling blood pressure via regulation of blood volume. The release of aldosterone is typically controlled by the renin–angiotensin–aldosterone system, situated in the adrenal glands, kidneys, and lungs. Here, we reveal that the class A scavenger receptor MARCO, expressed on alveolar macrophages, negatively regulates aldosterone production and suppresses angiotensin-converting enzyme (Ace) expression in the lungs of male mice. Collectively, our findings suggest alveolar macrophages as additional players in the renin–angiotensin–aldosterone system and introduce a novel example of interplay between the immune and endocrine systems.
Ubiquitination of angiotensin-converting enzyme 2 contributes to the development of pulmonary arterial hypertension mediated by neural precursor cell–expressed developmentally down-regulated gene 4-Like
Objectives In this study, we investigated whether neural precursor cell–expressed developmentally down-regulated gene 4-like (NEDD4L) is the E3 enzyme of angiotensin-converting enzyme 2 (ACE2) and whether NEDD4L degrades ACE2 via ubiquitination, leading to the progression of pulmonary arterial hypertension (PAH). Methods Bioinformatic analyses were used to explore the E3 ligase that ubiquitinates ACE2. Cultured pulmonary arterial smooth muscle cells (PASMCs) and specimens from patients with PAH were used to investigate the crosstalk between NEDD4L and ACE2 and its ubiquitination in the context of PAH. Results The inhibition of ubiquitination attenuated hypoxia-induced proliferation of PASMCs. The levels of NEDD4L were increased, and those of ACE2 were decreased in lung tissues from patients with PAH and in PASMCs. NEDD4L, the E3 ligase of ACE2, inhibited the expression of ACE2 in PASMCs, possibly through ubiquitination-mediated degradation. PAH was associated with upregulation of NEDD4L expression and downregulation of ACE2 expression. Conclusions NEDD4L, the E3 ubiquitination enzyme of ACE2, promotes the proliferation of PASMCs, ultimately leading to PAH.
A Putative Role of de-Mono-ADP-Ribosylation of STAT1 by the SARS-CoV-2 Nsp3 Protein in the Cytokine Storm Syndrome of COVID-19
As more cases of COVID-19 are studied and treated worldwide, it had become apparent that the lethal and most severe cases of pneumonia are due to an out-of-control inflammatory response to the SARS-CoV-2 virus. I explored the putative causes of this specific feature through a detailed genomic comparison with the closest SARS-CoV-2 relatives isolated from bats, as well as previous coronavirus strains responsible for the previous epidemics (SARS-CoV and MERS-CoV). The high variability region of the nsp3 protein was confirmed to exhibit the most variations between closest strains. It was then studied in the context of physiological and molecular data available in the literature. A number of convergent findings suggest de-mono-ADP-ribosylation (de-MARylation) of STAT1 by the SARS-CoV-2 nsp3 as a putative cause of the cytokine storm observed in the most severe cases of COVID-19. This may suggest new therapeutic approaches and help in designing assays to predict the virulence of naturally circulating SARS-like animal coronaviruses.
Angiotensin-converting enzyme 2 inhibits high-mobility group box 1 and attenuates cardiac dysfunction post-myocardial ischemia
High-mobility group box 1 (HMGB1) triggers and amplifies inflammation cascade following ischemic injury, and its elevated levels are associated with adverse clinical outcomes in patients with myocardial infarction (MI). Angiotensin-converting enzyme 2 (ACE2), a key member of vasoprotective axis of the renin-angiotensin system (RAS), regulates cardiovascular functions and exerts beneficial effects in cardiovascular disease. However, the association between HMGB1 and ACE2 has not been studied. We hypothesized that overexpression of ACE2 provides cardioprotective effects against MI via inhibiting HMGB1 and inflammation. ACE2 knock-in (KI) mice and littermate wild-type (WT) controls were subjected to either sham or coronary artery ligation surgery to induce MI. Heart function was assessed 4 weeks after surgery using echocardiography and Millar catheterization. Tissues were collected for histology and analysis of the expression of HMGB1, RAS components, and inflammatory cytokines. ACE2 in the heart of the ACE2 KI mice was 58-fold higher than WT controls. ACE2-MI mice exhibited a remarkable preservation of cardiac function and reduction of infarct size in comparison to WT-MI mice. Notably, ACE2 overexpression significantly reduced the MI-induced increase in apoptosis, macrophage infiltration, and HMGB1 and pro-inflammatory cytokine expression (TNF-α and IL-6). Moreover, in an in vitro study, ACE2 activation prevented the hypoxia-induced cell death and upregulation of HMGB1 in adult cardiomyocytes. This protective effect is correlated with downregulation of HMGB1 and downstream pro-inflammatory cascades, which could be useful for the development of novel treatment for ischemic heart disease. Key messages ACE2 knock-in animals have a normal phenotype. Overexpression of ACE2 favorably shifts the balance of the RAS to vasoprotective axis. Overexpression of ACE2 represses ischemia-induced elevation of HMGB1 and inflammatory cytokines.