Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
42
result(s) for
"Peptostreptococcaceae"
Sort by:
Gut Microbiota Differences According to Ultra-Processed Food Consumption in a Spanish Population
by
Aranaz, Paula
,
Cuevas-Sierra, Amanda
,
Riezu-Boj, José I.
in
Acidaminococcus
,
Anaerofilum
,
Antibiotics
2021
Ultra-processed foods (UPFs) consumption could affect gut microbiota diversity and profile. We aimed to evaluate the effects of UPFs on microbiota, considering the role of sex. The consumption of UPFs (using NOVA criteria) was assessed with a validated 137-item food-frequency questionnaire. Participants (n = 359) were classified into less than three servings per day (n = 96) of UPFs and more than five (n = 90). Women and men were subclassified following the same criteria. 16S rRNA sequencing was performed from DNA fecal samples, and differences in microbiota were analyzed using EdgeR. The relationship between UPFs and bacteria was assessed by Spearman correlation and comparison of tertiles of consumption. Women who consumed more than five servings/day of UPFs presented an increase in Acidaminococcus, Butyrivibrio, Gemmiger, Shigella, Anaerofilum, Parabacteroides, Bifidobacterium, Enterobacteriales, Bifidobacteriales and Actinobacteria and a decrease in Melainabacter and Lachnospira. Bifidobacterium, Bifidobacteriales and Actinobacteria was positively associated with pizza and Actinobacteria with industrially processed dairy in women. Men who consumed more than five servings/day presented an increase of Granulicatella, Blautia, Carnobacteriaceae, Bacteroidaceae, Peptostreptococcaceae, Bacteroidia and Bacteroidetes and a decrease of Anaerostipes and Clostridiaceae. Bacteroidia and Bacteroidetes correlated positively with industrially processed meat. This study suggests that UPFs may affect microbiota composition differently in women and men.
Journal Article
A Large Genetic Causal Analysis of the Gut Microbiota and Urological Cancers: A Bidirectional Mendelian Randomization Study
2023
Background: Several observational studies and clinical trials have shown that the gut microbiota is associated with urological cancers. However, the causal relationship between gut microbiota and urological cancers remains to be elucidated due to many confounding factors. Methods: In this study, we used two thresholds to identify gut microbiota GWAS from the MiBioGen consortium and obtained data for five urological cancers from the UK biobank and Finngen consortium, respectively. We then performed a two-sample Mendelian randomization (MR) analysis with Wald ratio or inverse variance weighted as the main method. We also performed comprehensive sensitivity analyses to verify the robustness of the results. In addition, we performed a reverse MR analysis to examine the direction of causality. Results: Our study found that family Rikenellaceae, genus Allisonella, genus Lachnospiraceae UCG001, genus Oscillibacter, genus Eubacterium coprostanoligenes group, genus Eubacterium ruminantium group, genus Ruminococcaceae UCG013, and genus Senegalimassilia were related to bladder cancer; genus Ruminococcus torques group, genus Oscillibacter, genus Barnesiella, genus Butyricicoccus, and genus Ruminococcaceae UCG005 were related to prostate cancer; class Alphaproteobacteria, class Bacilli, family Family XI, genus Coprococcus2, genus Intestinimonas, genus Lachnoclostridium, genus Lactococcus, genus Ruminococcus torques group, and genus Eubacterium brachy group were related to renal cell cancer; family Clostridiaceae 1, family Christensenellaceae, genus Eubacterium coprostanoligenes group, genus Clostridium sensu stricto 1, and genus Eubacterium eligens group were related to renal pelvis cancer; family Peptostreptococcaceae, genus Romboutsia, and genus Subdoligranulum were related to testicular cancer. Comprehensive sensitivity analyses proved that our results were reliable. Conclusions: Our study confirms the role of specific gut microbial taxa on urological cancers, explores the mechanism of gut microbiota on urological cancers from a macroscopic level, provides potential targets for the screening and treatment of urological cancers, and is dedicated to providing new ideas for clinical research.
Journal Article
Heat-Killed Bifidobacterium bifidum B1628 May Alleviate Dextran Sulfate Sodium-Induced Colitis in Mice, and the Anti-Inflammatory Effect Is Associated with Gut Microbiota Modulation
2022
Inflammatory bowel disease (IBD) is a chronic inflammatory disease associated with gut dysbiosis. This study aimed to investigate the effects of heat-killed Bifidobacterium bifidum B1628 (HB1628) in dextran sulfate sodium (DSS)-induced colitis in mice. The following three mouse groups were included (n = eight per group): NC (normal control), DSS (colitis), and HB1628 (colitis and postbiotic). The mice in the DSS group showed significant weight loss and histological damage, developed bloody diarrhea, scored high in the disease activity index (DAI), and exhibited increases in pro-inflammatory cytokines (interleukin [IL]-1β, IL-6, and tumor necrosis factor [TNF]-α) and decreases in an anti-inflammatory cytokine (IL-13) in the serum. These changes were accompanied by gut microbiota modulation in colitis mice (decreases in Rikenellaceae and Eubacterium; increases in Peptostreptococcaceae, Bacteroides vulgatus, and Parasutterella excrementihominis). The HB1628 group had lower DAIs, histology scores, and serum levels of pro-inflammatory cytokines (IL-1β and TNF-α), but higher levels of an anti-inflammatory cytokine (IL-13), compared with the DSS group, suggesting a less severe inflammatory state after the HB1628 intervention. Additionally, HB1628 improved DSS-induced gut dysbiosis, which is evidenced by increases in intestinal beneficial bacteria, such as Lactobacillus, and decreases in known unfavorable taxa in IBD, e.g., Porphyromonadaceae, Subdoligranulum, Lachnospiraceae bacterium 3_1_46FAA, and Alistipes indistinctus. Functional metagenomics revealed three significantly enriched metabolic pathways in the HB1628 group (namely, the aerobic respiration I [cytochrome c] pathway and the superpathways of L-phenylalanine biosynthesis and L-tryptophan biosynthesis, respectively). In conclusion, our results showed that HB1628 effectively improved the inflammation state and tissue damage in DSS-induced colitis mice, and the symptom relief effect was accompanied by obvious gut microbiota remodulation.
Journal Article
Intestinal Taxa Abundance and Diversity in Inflammatory Bowel Disease Patients: An Analysis including Covariates and Confounders
2022
Intestinal dysbiosis has been widely documented in inflammatory bowel diseases (IBDs) and is thought to influence the onset and perpetuation of gut inflammation. However, it remains unclear whether such bacterial changes rely in part on the modification of an IBD-associated lifestyle (e.g., smoking and physical activity) and diet (e.g., rich in dairy products, cereals, meat and vegetables). In this study, we investigated the impact of these habits, which we defined as confounders and covariates, on the modulation of intestinal taxa abundance and diversity in IBD patients. 16S rRNA gene sequence analysis was performed using genomic DNA extracted from the faecal samples of 52 patients with Crohn’s disease (CD) and 58 with ulcerative colitis (UC), which are the two main types of IBD, as well as 42 healthy controls (HC). A reduced microbial diversity was documented in the IBD patients compared with the HC. Moreover, we identified specific confounders and covariates that influenced the association between some bacterial taxa and disease extent (in UC patients) or behaviour (in CD patients) compared with the HC. In particular, a PERMANOVA stepwise regression identified the variables “age”, “eat yogurt at least four days per week” and “eat dairy products at least 4 days per week” as covariates when comparing the HC and patients affected by ulcerative proctitis (E1), left-sided UC (distal UC) (E2) and extensive UC (pancolitis) (E3). Instead, the variables “age”, “gender”, “eat meat at least four days per week” and “eat bread at least 4 days per week” were considered as covariates when comparing the HC with the CD patients affected by non-stricturing, non-penetrating (B1), stricturing (B2) and penetrating (B3) diseases. Considering such variables, our analysis indicated that the UC extent differentially modulated the abundance of the Bifidobacteriaceae, Rikenellaceae, Christensenellaceae, Marinifilaceae, Desulfovibrionaceae, Lactobacillaceae, Streptococcaceae and Peptostreptococcaceae families, while the CD behaviour influenced the abundance of Christensenellaceae, Marinifilaceae, Rikenellaceae, Ruminococcaceae, Barnesiellaceae and Coriobacteriaceae families. In conclusion, our study indicated that some covariates and confounders related to an IBD-associated lifestyle and dietary habits influenced the intestinal taxa diversity and relative abundance in the CD and UC patients compared with the HC. Indeed, such variables should be identified and excluded from the analysis to characterize the bacterial families whose abundance is directly modulated by IBD status, as well as disease extent or behaviour.
Journal Article
Effect of probiotics on the intestinal microbiota of hemodialysis patients: a randomized trial
2020
Background
Intestinal dysbiosis contributes to the progression of renal failure and cardiovascular diseases in patients with chronic kidney disease. Probiotics is a promising intervention to improving intestinal dysbiosis. A double-blind clinical trial to investigate the ability of probiotics to modulate gut microbiota compositions in patients receiving hemodialysis (HD) was undertaken.
Methods
Fifty HD patients were enrolled and randomized, receiving either probiotics or placebo for 6 months. The responses to the interventions on gut microbiome, serum and fecal metabolome, serum albumin and endotoxin, endothelial activation markers and inflammatory markers were assessed.
Results
Totally, 22 in the probiotics group (11 males; 14 non-diabetic) and 23 in the placebo group (13 males; 17 non-diabetic) completed the study. Compared to that in the placebo group, probiotics did not significantly alter species diversity of the fecal microbiome. Probiotics did, however, restore the community composition, with particular significance in non-diabetic HD patients (
P
= 0.007 by Adonis analysis). Specifically, according to the results of linear discriminate analysis effect size, probiotics raised the proportions of family Bacteroidaceae and Enterococcaceae, and reduced Ruminococcaceae, Halomonadaceae, Peptostreptococcaceae, Clostridiales Family XIII. Incertae Sedis and Erysipelotrichaceae in non-diabetic HD patients. Additionally, probiotics reduced the abundances of several uremic retention solutes in serum or feces, including indole-3-acetic acid-
O
-glucuronide, 3-guanidinopropionic acid, and 1-methylinosine (
P
< 0.05). In the probiotic arm, no significant changes were observed in other secondary outcomes.
Conclusions
Taken together, outcomes from this study suggest that probiotics do have benefits on improving intestinal imbalances and lowering exposure to several uremic toxins in HD patients.
Journal Article
Possible metabolic interplay between quality of life and fecal microbiota in a presenior population: Preliminary results
by
Martínez, J. Alfredo
,
Abete, Itziar
,
Navas-Carretero, Santiago
in
Actinobacteria
,
adults
,
Bacteria
2022
•Gut microbiota diversity is associated with different quality-of-life scores.•Increased fecal Actinobacteria abundance is linked to higher quality of life.•Decreased gut Peptostreptococcaceae abundance is related to enhanced quality of life.•Actinobacteria and Peptostreptococcaceae have been found to be related with mental health.
The number of people aged ≥60 y is increasing worldwide, so establishing a relationship between lifestyle and health-associated factors, such as gut microbiota in an older population, is important. This study aimed to characterize the gut microbiota of a presenior population, and analyze the association between some bacteria and quality of life with the Short Form (SF) 36 questionnaire.
Participants were adult men and women ages 50 to 80 y (n = 74). In addition to the SF-36 questionnaire, fecal samples were collected in cryotubes, and 16S RNA gene sequencing was performed to characterize microbial features. Participants were classified into two groups according to SF-36 punctuation. Linear and logistic regression models were performed to assess the possible association between any bacterial bowl and SF-36 score. Receiver operating characteristics curves were fitted to define the relative diagnostic strength of different bacterial taxa for the correct determination of quality of life.
A positive relationship was established between SF-36 score and Actinobacteria (P = 0.0310; R = 0.2510) compared with Peptostreptococcaceae (P = 0.0259; R = –0.2589), which increased with decreasing quality of life. Logistic regressions models and receiver operating characteristics curves showed that the relative abundance of Actinobacteria and Peptostreptococcaceae may be useful to predict quality of life in a presenior population (area under the curve: 0.71).
Quality of life may be associated with the relative abundance of certain bacteria, especially Actinobacteria and Peptostreptococcaceae, which may have a specific effect on certain markers and health care, which is important to improve quality of life in older populations.
Journal Article
Dissecting the Association between Gut Microbiota and Brain Structure Change Rate: A Two-Sample Bidirectional Mendelian Randomization Study
2023
The connection between the gut microbiota and brain structure changes is still unclear. We conducted a Mendelian randomization (MR) study to examine the bidirectional causality between the gut microbiota (211 taxa, including 131 genera, 35 families, 20 orders, 16 classes and 9 phyla; N = 18,340 individuals) and age-independent/dependent longitudinal changes in brain structure across the lifespan (N = 15,640 individuals aged 4~99 years). We identified causal associations between the gut microbiota and age-independent/dependent longitudinal changes in brain structure, such as family Peptostreptococcaceae with age-independent longitudinal changes of cortical gray matter (GM) volume and genus Faecalibacterium with age-independent average cortical thickness and cortical GM volume. Taking age-independent longitudinal changes in brain structure across the lifespan as exposures, there were causal relationships between the surface area and genus Lachnospiraceae. Our findings may serve as fundamentals for further research on the genetic mechanisms and biological treatment of complex traits and diseases associated with the gut microbiota and the brain structure change rate.
Journal Article
Dietary Bacillus spp. enhanced growth and disease resistance of weaned pigs by modulating intestinal microbiota and systemic immunity
by
Jinno, Cynthia
,
Tan, Bie
,
Whelan, Rose
in
Agriculture
,
Animal Genetics and Genomics
,
Animal growth
2020
Background
Previous research has shown that dietary supplementation of
Bacillus
spp. probiotics exerts beneficial effects on animals’ growth. However, limited studies have evaluated the efficacy of
Bacillus
spp
.
on weaned pigs and their effects on host gut health and microbiome, and systemic immunity using a disease challenge model. The objective of this experiment was to investigate the effects of two
Bacillus
spp
.
strains (
Bacillus subtilis
DSM 32540 and
Bacillus pumilus
DSM 32539) on growth performance, diarrhea, intestinal health, microbiome, and systemic immunity of weaned pigs experimentally infected with an enterotoxigenic
Escherichia coli
(ETEC).
Results
Pigs in PRO1 (
Bacillus subtilis
DSM 32540) had greater (
P
< 0.05) body weight on d 7 and 14 PI, greater (
P
< 0.05) ADG from d 0 to 7 and d 7 to 14 PI, compared with pigs in CON (Control). Pigs in PRO1 had milder (
P
< 0.05) diarrhea on d 2 and 3 PI compared with pigs in CON. However, no differences were observed in growth performance and diarrhea score between PRO2 (
Bacillus pumilus
DSM 32539) and CON groups. Supplementation of PRO1 decreased (
P
< 0.05) lymphocyte counts on d 7 and 14 PI, compared with CON. Supplementation of PRO1 and PRO2 both reduced (
P
< 0.05) total coliforms in mesenteric lymph nodes on d 21 PI. Pigs in PRO2 had greater (
P
< 0.05) goblet cell number and sulfomucin percentage in duodenal villi and greater (
P
< 0.05) sialomucin percentage in jejunal villi than pigs in CON. Supplementation of PRO1 up-regulated (
P
< 0.05)
MUC2
gene expression in jejunal mucosa and reduced (
P
< 0.05)
PTGS-2
and
IL1B
gene expression in ileal mucosa on d 21 PI, compared with CON. Pigs in PRO1 had reduced (
P
< 0.05) relative abundance of families Lachnospiraceae, Peptostreptococcaceae and Pasteurellaceae in the ileum.
Conclusions
Supplementation of
Bacillus subtilis
DSM 32540 improved growth performance, alleviated diarrhea severity, enhanced gut health, and reduced systemic inflammation of weaned pigs infected with ETEC F18. Although
Bacillus pumilus
DSM 32539 was able to alleviate systemic inflammation, it had limited impacts on growth performance and severity of diarrhea of ETEC F18 challenged weaned pigs.
Journal Article
Particle size effects in microbial characteristics in thermophilic anaerobic digestion of cattle manure containing copper oxide
by
Lina, Pang
,
Efthalia, Chatzisymeon
,
Hongyan, Lu
in
Anaerobic digestion
,
Anaerobic microorganisms
,
Anaerobiosis
2022
Roles of bulk-, micron-, and nano-copper oxide (CuO) on methane production, microbial diversity, functions during thermophilic anaerobic digestion (AD) were investigated in this study. Results showed that bulk-, micron-, and nano-CuO promoted methane production by 27.8%, 47.6%. and 83.1% compared to the control group, respectively. Microbial community analysis demonstrated that different particle sizes could cause various shifts on bacteria community, while had little effect on archaeal diversity. Thereinto, bacteria belonging to phylum Firmicutes and Coprothermobacterota dominated in enhanced hydrolysis process in groups with nano-CuO and bulk-CuO, respectively, while micron-CuO had stronger promotion on the abundances of hydrolytic and fermentative bacteria belonging to families Peptostreptococcaceae, Caloramatoraceae, Erysipelotrichaceae, and Clostridiaceae, than other two CuO sizes. Metabolic pathways revealed that energy-related metabolism and material transformation in bacteria were only boosted by micron-CuO, and nano-CuO and bulk-CuO were important to methanogenic activity, stimulating energy consumption and methane metabolism, respectively.
Journal Article
Selection and characterization of an anaerobic microbial consortium with high adaptation to crude glycerol for 1,3-propanediol production
2017
Crude glycerol is an ideal feedstock for bioproduction of 1,3-propanediol (1,3-PDO) while pure culture always shows low substrate tolerance and limited productivity. In this study, an anaerobic microbial consortium for conversion of crude glycerol was selected and its 1,3-PDO production capacity was evaluated. The consortium was obtained from anaerobic activated sludge by 19 serial transfers and mainly consisted of 94.64%
Clostridiaceae
and 4.47%
Peptostreptococcaceae.
The consortium adapted well with high glycerol concentration of 120 g/L as well as wide substrate concentration fluctuation from 15 to 80 g/L, producing 60.61 and 82.66 g/L 1,3-PDO in the batch and fed-batch fermentation, with the productivity of 3.79 and 3.06 g/(L∙h), respectively, which are among the best results published so far. Furthermore, mini consortia isolated by serial dilution exhibited similar microbial composition but gradually decreasing tolerance to crude glycerol. Four randomly selected
Clostridium butyricum
displayed different substrate tolerance and insufficient 1,3-PDO production capacity. This work demonstrated that the high adaptation to crude glycerol of the consortium was the collaborative effort of different individuals.
Journal Article