Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
1,152
result(s) for
"Permafrost thaws"
Sort by:
Large stocks of peatland carbon and nitrogen are vulnerable to permafrost thaw
by
Yu, Zicheng
,
Turetsky, Merritt
,
Jones, Miriam
in
Anthropogenic factors
,
Carbon dioxide
,
carbon stocks
2020
Northern peatlands have accumulated large stocks of organic carbon (C) and nitrogen (N), but their spatial distribution and vulnerability to climate warming remain uncertain. Here, we used machine-learning techniques with extensive peat core data (n > 7,000) to create observation-based maps of northern peatland C and N stocks, and to assess their response to warming and permafrost thaw. We estimate that northern peatlands cover 3.7 ± 0.5 million km² and store 415 ± 150 Pg C and 10 ± 7 Pg N. Nearly half of the peatland area and peat C stocks are permafrost affected. Using modeled global warming stabilization scenarios (from 1.5 to 6 °C warming), we project that the current sink of atmospheric C (0.10 ± 0.02 Pg C·y−1) in northern peatlands will shift to a C source as 0.8 to 1.9 million km² of permafrost-affected peatlands thaw. The projected thaw would cause peatland greenhouse gas emissions equal to ∼1% of anthropogenic radiative forcing in this century. The main forcing is from methane emissions (0.7 to 3 Pg cumulative CH4-C) with smaller carbon dioxide forcing (1 to 2 Pg CO2-C) and minor nitrous oxide losses. We project that initial CO2-C losses reverse after ∼200 y, as warming strengthens peatland C-sinks. We project substantial, but highly uncertain, additional losses of peat into fluvial systems of 10 to 30 Pg C and 0.4 to 0.9 Pg N. The combined gaseous and fluvial peatland C loss estimated here adds 30 to 50% onto previous estimates of permafrost-thaw C losses, with southern permafrost regions being the most vulnerable.
Journal Article
Population living on permafrost in the Arctic
by
Wang, Shinan
,
Westermann, Sebastian
,
Jungsberg, Leneisja
in
Arctic zone
,
Climate change
,
Demography
2021
Permafrost thaw is a challenge in many Arctic regions, one that modifies ecosystems and affects infrastructure and livelihoods. To date, there have been no demographic studies of the population on permafrost. We present the first estimates of the number of inhabitants on permafrost in the Arctic Circumpolar Permafrost Region (ACPR) and project changes as a result of permafrost thaw. We combine current and projected populations at settlement level with permafrost extent. Key findings indicate that there are 1162 permafrost settlements in the ACPR, accommodating 5 million inhabitants, of whom 1 million live along a coast. Climate-driven permafrost projections suggest that by 2050, 42% of the permafrost settlements will become permafrost-free due to thawing. Among the settlements remaining on permafrost, 42% are in high hazard zones, where the consequences of permafrost thaw will be most severe. In total, 3.3 million people in the ACPR live currently in settlements where permafrost will degrade and ultimately disappear by 2050.
Journal Article
Permafrost Thaw Dynamics Drive the Regime Shifts of Iron‐Bound Organic Carbon Sequestration in the East Siberian Arctic Shelf
2026
In the changing Arctic, permafrost thaw is shifting from gradual to abrupt. Although iron‐bound organic carbon (OC‐FeR) critically modulates permafrost carbon‐climate feedbacks, its decadal‐scale variability and response to this regime shift remain poorly constrained. Focusing on the East Siberian Arctic, a hotspot of land‐to‐ocean permafrost carbon transfer, we established critical linkages between marine sedimentary OC‐FeR burial records and terrestrial permafrost‐climate dynamics. Results revealed that coastal OC‐FeR reservoirs exhibited temporally‐distinct responses to permafrost thawing dynamics. During the pre‐2000s, the progressive decline in OC‐FeR coincided with watershed‐scale soil moisture redistribution driven by gradual active‐layer deepening, which preferentially retained OC‐FeR in permafrost, attenuating its land‐to‐ocean fluxes. Since 2000s, although abrupt thaw has rapidly mobilized OC, ∼19% of sedimentary OC remained stabilized as OC‐FeR, thus partially decoupling abrupt thaw from immediate permafrost carbon‐climate feedbacks. Therefore, this mineralogical buffering mechanism can attenuate the net climate impact of accelerating abrupt thaw across the Northern Hemisphere cryosphere.
Journal Article
Changing microbiome community structure and functional potential during permafrost thawing on the Tibetan Plateau
2023
Abstract
Large amounts of carbon sequestered in permafrost on the Tibetan Plateau (TP) are becoming vulnerable to microbial decomposition in a warming world. However, knowledge about how the responsible microbial community responds to warming-induced permafrost thaw on the TP is still limited. This study aimed to conduct a comprehensive comparison of the microbial communities and their functional potential in the active layer of thawing permafrost on the TP. We found that the microbial communities were diverse and varied across soil profiles. The microbial diversity declined and the relative abundance of Chloroflexi, Bacteroidetes, Euryarchaeota, and Bathyarchaeota significantly increased with permafrost thawing. Moreover, warming reduced the similarity and stability of active layer microbial communities. The high-throughput qPCR results showed that the abundance of functional genes involved in liable carbon degradation and methanogenesis increased with permafrost thawing. Notably, the significantly increased mcrA gene abundance and the higher methanogens to methanotrophs ratio implied enhanced methanogenic activities during permafrost thawing. Overall, the composition and functional potentials of the active layer microbial community in the Tibetan permafrost region are susceptible to warming. These changes in the responsible microbial community may accelerate carbon degradation, particularly in the methane releases from alpine permafrost ecosystems on the TP.
Warming-induced permafrost thawing increased the abundance of anaerobic microorganisms and functional genes involved in labile carbon degradation and methane cycles, which could accelerate soil carbon degradation on TP.
Journal Article
Permafrost carbon cycle and its dynamics on the Tibetan Plateau
by
Yang, Yuanhe
,
Chen, Leiyi
,
Song, Yutong
in
Biomedical and Life Sciences
,
Carbon - metabolism
,
Carbon Cycle
2024
Our knowledge on permafrost carbon (C) cycle is crucial for understanding its feedback to climate warming and developing nature-based solutions for mitigating climate change. To understand the characteristics of permafrost C cycle on the Tibetan Plateau, the largest alpine permafrost region around the world, we summarized recent advances including the stocks and fluxes of permafrost C and their responses to thawing, and depicted permafrost C dynamics within this century. We find that this alpine permafrost region stores approximately 14.1 Pg (1 Pg=10
15
g) of soil organic C (SOC) in the top 3 m. Both substantial gaseous emissions and lateral C transport occur across this permafrost region. Moreover, the mobilization of frozen C is expedited by permafrost thaw, especially by the formation of thermokarst landscapes, which could release significant amounts of C into the atmosphere and surrounding water bodies. This alpine permafrost region nevertheless remains an important C sink, and its capacity to sequester C will continue to increase by 2100. For future perspectives, we would suggest developing long-term
in situ
observation networks of C stocks and fluxes with improved temporal and spatial coverage, and exploring the mechanisms underlying the response of ecosystem C cycle to permafrost thaw. In addition, it is essential to improve the projection of permafrost C dynamics through in-depth model-data fusion on the Tibetan Plateau.
Journal Article
Mobilization of subsurface carbon pools driven by permafrost thaw and reactivation of groundwater flow: a virtual experiment
by
Kurylyk, Barret L
,
Guimond, Julia A
,
Bense, Victor F
in
Bioavailability
,
Biogeochemistry
,
Carbon
2022
Permafrost thaw leads to an increase in groundwater circulation and potential mobilization of organic carbon sequestered in deep Arctic sediments (e.g. 3–25 m below surface). Upon thaw, a portion of this carbon may be transported along new groundwater flow paths to surface waters or be microbially transformed or immobilized by in-situ biogeochemical reactions. The fate of thaw-mobilized carbon impacts surface water productivity and global climate. We developed a numerical model to investigate the effects of subsurface warming, permafrost thaw, and resultant increased groundwater flow on the mobilization and reactive transport of dissolved organic carbon (DOC). Synthetic simulations demonstrate that mobilization and groundwater-borne DOC export are determined by subsurface thermo-chemical conditions that control the interplay of DOC production (organic matter degradation), mineralization, and sorption. Results suggest that peak carbon mobilization from these depths precedes complete permafrost loss, occurring within two centuries of thaw initiation with the development of supra-permafrost groundwater flow systems. Additionally, this study highlights the lack of field data needed to constrain these new models and apply them in real-word site-specific applications, specifically the amount and spatial variability of organic carbon in deep sediments and data to constrain DOC production rates for groundwater systems in degrading permafrost. Modeling results point to key biogeochemical parameters related to organic matter and carbon bioavailability to be measured in the field to bridge the gap between models and observations. This study provides a foundation for further developing a physics-based modeling framework to incorporate the influence of groundwater flow and permafrost thaw on permafrost DOC dynamics and export, which is imperative for advancing understanding and prediction of carbon release and terrestrial-aquatic carbon exchange in warming Artic landscapes in the coming decades.
Journal Article
The Impact of Climate and Land Cover Change on the Cryosphere and Hydrology of the Mackenzie River Basin, Canada
by
Pomeroy, John W
,
Elshamy, Mohamed E
,
Abdelhamed, Mohamed
in
Base flow
,
Carbon
,
Climate change
2025
Northern basins are projected to continue warming at rates higher than the global average, with the impacts of warming compounded by concomitant deglaciation, permafrost thaw and vegetation shifts. The Mackenzie River Basin drains headwaters in the glaciated Canadian Rockies to the Arctic Ocean and is mostly underlain by permafrost. Scenarios of future change in this basin were simulated using the MESH distributed hydrological‐cryospheric land surface model. MESH was forced with bias‐corrected, downscaled RCM forcings and parameterized with a deep subsurface profile, organic soils, and glaciers. The model, validated against discharge, snowpack, and permafrost observations, was used to simulate 21st century hydrology and permafrost dynamics under the RCP8.5 emissions scenario, incorporating projected land cover change applied at two discrete time steps (2021 and 2065). The findings indicate a rapid acceleration of permafrost thaw. By the 2080s, most of the basin will be devoid of permafrost. By late century, river discharges shift to earlier and higher peaks in response to projected increases in precipitation, temperature and snowmelt, despite increases in evapotranspiration from longer snow‐free seasons. Baseflow discharges increase in winter, due to higher precipitation and increased basin connectivity from permafrost thaw resulting in enhanced groundwater flow. Subsurface moisture storage rises slightly but the liquid water fraction increases dramatically, increasing subsurface runoff and river discharge. Canadian Rockies' deglaciation reduces summer and annual discharge in the Athabasca and Peace headwaters. Downstream and northward of the mountain headwaters the direct impacts of climate change on river discharge dominate those of changing land cover and glaciers.
Journal Article
Changes in water quality related to permafrost thaw may significantly impact zooplankton in small Arctic lakes
2020
Rising temperatures are leading to permafrost thaw over vast areas of the northern hemisphere. In the Canadian Arctic, permafrost degradation is causing significant changes in surface water quality due to the release of solutes that can alter conductivity, water clarity, and nutrient levels. For this study, we examined how changes in water quality associated with permafrost thaw might impact zooplankton, a group of organisms that play an important role in the food web of Arctic lakes. We conducted a biological and water quality survey of 37 lakes in the Mackenzie Delta region of Canada’s Northwest Territories. We then used this data set to develop models linking variation in the abundance, diversity, and evenness of zooplankton communities to physicochemical, biological, and spatial variables. Subsequently, we used these models to predict how zooplankton communities might respond as water quality is altered by permafrost thaw. Our models explained 47%, 68%, and 69% of the variation in zooplankton abundance, diversity, and evenness, respectively. Importantly, the most parsimonious models always included variables affected by permafrost thaw, such as calcium and conductivity. Predictions based on our models suggest significant increases in zooplankton abundance (1.6–3.6 fold) and decreases in diversity (1.2–1.7 fold) and evenness (1.1–1.4 fold) in response to water quality changes associated with permafrost thaw. These changes are in line with those described for significant perturbations such as eutrophication, acidification, and the introduction of exotic species such as the spiny water flea (Bythotrephes). Given their important role in aquatic food webs, we expect these changes in zooplankton communities will have ramifications for organisms at higher (fish) and lower (phytoplankton) trophic positions in Arctic lakes.
Journal Article
Sensitivity of headwater streamflow to thawing permafrost and vegetation change in a warming Arctic
2022
Climate change has the potential to impact headwater streams in the Arctic by thawing permafrost and subsequently altering hydrologic regimes and vegetation distribution, physiognomy and productivity. Permafrost thaw and increased subsurface flow have been inferred from the chemistry of large rivers, but there is limited empirical evidence of the impacts to headwater streams. Here we demonstrate how changing vegetation cover and soil thaw may alter headwater catchment hydrology using water budgets, stream discharge trends, and chemistry across a gradient of ground temperature in northwestern Alaska. Colder, tundra-dominated catchments shed precipitation through stream discharge, whereas in warmer catchments with greater forest extent, evapotranspiration (ET) and infiltration are substantial fluxes. Forest soils thaw earlier, remain thawed longer, and display seasonal water content declines, consistent with greater ET and infiltration. Streambed infiltration and water chemistry indicate that even minor warming can lead to increased infiltration and subsurface flow. Additional warming, permafrost loss, and vegetation shifts in the Arctic will deliver water back to the atmosphere and to subsurface aquifers in many regions, with the potential to substantially reduce discharge in headwater streams, if not compensated by increasing precipitation. Decreasing discharge in headwater streams will have important implications for aquatic and riparian ecosystems.
Journal Article
Potential nitrogen mobilisation from the Yedoma permafrost domain
2024
Permafrost regions, characterised by extensive belowground excess ice, are highly vulnerable to rapid thaw, particularly in areas such as the Yedoma domain. This region is known to freeze-lock a globally significant stock of soil nitrogen (N). However, the fate of this N upon permafrost thaw remains largely unknown. In this study, we assess the impact of climate warming on the size and dynamics of the soil N pool in (sub-)Arctic ecosystems, drawing upon recently published data and literature. Our findings suggest that climate warming and increased thaw depths will result in an expansion of the reactive soil N pool due to the larger volume of (seasonally) thawed soil. Dissolved organic N emerges as the predominant N form for rapid cycling within (sub-)Arctic ecosystems. The fate of newly thawed N from permafrost is primarily influenced by plant uptake, microbial immobilisation, changes in decomposition rates due to improved N availability, as well as lateral flow. The Yedoma domain contains substantial N pools, and the partial but increasing thaw of this previously frozen N has the potential to amplify climate feedbacks through additional nitrous oxide (N 2 O) emissions. Our ballpark estimate indicates that the Yedoma domain may contribute approximately 6% of the global annual rate of N 2 O emissions from soils under natural vegetation. However, the released soil N could also mitigate climate feedbacks by promoting enhanced vegetation carbon uptake. The likelihood and rate of N 2 O production are highest in permafrost thaw sites with intermediate moisture content and disturbed vegetation, but accurately predicting future landscape and hydrology changes in the Yedoma domain remains challenging. Nevertheless, it is evident that the permafrost-climate feedback will be significantly influenced by the quantity and mobilisation state of this unconsidered N pool.
Journal Article