Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
80
result(s) for
"Peroxisomal Targeting Signals"
Sort by:
Accurate and live peroxisome biogenesis evaluation achieved by lentiviral expression of a green fluorescent protein fused to a peroxisome targeting signal 1
by
Sokal, Etienne M
,
Courtoy, Guillaume E
,
Najimi Mustapha
in
Biosynthesis
,
Cell culture
,
Drug screening
2020
Peroxisomes are ubiquitous organelles formed by peroxisome biogenesis (PB). During PB, peroxisomal matrix proteins harboring a peroxisome targeting signal (PTS) are imported inside peroxisomes by peroxins, encoded by PEX genes. Genetic alterations in PEX genes lead to a spectrum of incurable diseases called Zellweger spectrum disorders (ZSD). In vitro drug screening is part of the quest for a cure in ZSD by restoring PB in ZSD cell models. In vitro PB evaluation is commonly achieved by immunofluorescent staining or transient peroxisome fluorescent reporter expression. Both techniques have several drawbacks (cost, time-consuming technique, etc.) which we overcame by developing a third-generation lentiviral transfer plasmid expressing an enhanced green fluorescent protein fused to PTS1 (eGFP–PTS1). By eGFP–PTS1 lentiviral transduction, we quantified PB and peroxisome motility in ZSD and control mouse and human fibroblasts. We confirmed the stable eGFP–PTS1 expression along cell passages. eGFP signal analysis distinguished ZSD from control eGFP–PTS1-transduced cells. Live eGFP–PTS1 transduced cells imaging quantified peroxisomes motility. In conclusion, we developed a lentiviral transfer plasmid allowing stable eGFP–PTS1 expression to study PB (deposited on Addgene: #133282). This tool meets the needs for in vitro PB evaluation and ZSD drug discovery.
Journal Article
Pathway Compartmentalization in Peroxisome of Saccharomyces cerevisiae to Produce Versatile Medium Chain Fatty Alcohols
by
Sheng, Jiayuan
,
Stevens, Joseph
,
Feng, Xueyang
in
631/326/2522
,
631/61/318
,
Acetyl-CoA Carboxylase - genetics
2016
Fatty alcohols are value-added chemicals and important components of a variety of industries, which have a >3 billion-dollar global market annually. Long chain fatty alcohols (>C12) are mainly used in surfactants, lubricants, detergents, pharmaceuticals and cosmetics while medium chain fatty alcohols (C6–C12) could be used as diesel-like biofuels. Microbial production of fatty alcohols from renewable feedstock stands as a promising strategy to enable sustainable supply of fatty alcohols. In this study, we report, for the first time, that medium chain fatty alcohols could be produced in yeast via targeted expression of a fatty acyl-CoA reductase (TaFAR) in the peroxisome of
Saccharomyces cerevisiae
. By tagging TaFAR enzyme with peroxisomal targeting signal peptides, the TaFAR could be compartmentalized into the matrix of the peroxisome to hijack the medium chain fatty acyl-CoA generated from the beta-oxidation pathway and convert them to versatile medium chain fatty alcohols (C10 & C12). The overexpression of genes encoding PEX7 and acetyl-CoA carboxylase further improved fatty alcohol production by 1.4-fold. After medium optimization in fed-batch fermentation using glucose as the sole carbon source, fatty alcohols were produced at 1.3 g/L, including 6.9% 1-decanol, 27.5% 1-dodecanol, 2.9% 1-tetradecanol and 62.7% 1-hexadecanol. This work revealed that peroxisome could be engineered as a compartmentalized organelle for producing fatty acid-derived chemicals in
S. cerevisiae
.
Journal Article
Distinct Roles for Peroxisomal Targeting Signal Receptors Pex5 and Pex7 in Drosophila
by
Simmonds, Andrew J
,
Di Cara, Francesca
,
Rachubinski, Richard A
in
Acetyltransferases - chemistry
,
Acetyltransferases - metabolism
,
Animals
2019
Peroxisomes are ubiquitous membrane-enclosed organelles involved in lipid processing and reactive oxygen detoxification. Mutations in human peroxisome biogenesis genes (Peroxin, PEX, or Pex) cause developmental disabilities and often early death. Pex5 and Pex7 are receptors that recognize different peroxisomal targeting signals called PTS1 and PTS2, respectively, and traffic proteins to the peroxisomal matrix. We characterized mutants of Drosophila melanogaster Pex5 and Pex7 and found that adult animals are affected in lipid processing. Pex5 mutants exhibited severe developmental defects in the embryonic nervous system and muscle, similar to what is observed in humans with PEX5 mutations, while Pex7 fly mutants were weakly affected in brain development, suggesting different roles for fly Pex7 and human PEX7. Of note, although no PTS2-containing protein has been identified in Drosophila, Pex7 from Drosophila can function as a bona fide PTS2 receptor because it can rescue targeting of the PTS2-containing protein thiolase to peroxisomes in PEX7 mutant human fibroblasts.
Journal Article
Alternative splicing affects the targeting sequence of peroxisome proteins in Arabidopsis
by
Gao, Yuefang
,
Gao, Hongbo
,
An, Chuanjing
in
Alternative splicing
,
Alternative Splicing - genetics
,
Alternative Splicing - physiology
2017
Key message
A systematic analysis of the Arabidopsis genome in combination with localization experiments indicates that alternative splicing affects the peroxisomal targeting sequence of at least 71 genes in
Arabidopsis
.
Peroxisomes are ubiquitous eukaryotic cellular organelles that play a key role in diverse metabolic functions. All peroxisome proteins are encoded by nuclear genes and target to peroxisomes mainly through two types of targeting signals: peroxisomal targeting signal type 1 (PTS1) and PTS2. Alternative splicing (AS) is a process occurring in all eukaryotes by which a single pre-mRNA can generate multiple mRNA variants, often encoding proteins with functional differences. However, the effects of AS on the PTS1 or PTS2 and the targeting of the protein were rarely studied, especially in plants. Here, we systematically analyzed the genome of
Arabidopsis
, and found that the C-terminal targeting sequence PTS1 of 66 genes and the N-terminal targeting sequence PTS2 of 5 genes are affected by AS. Experimental determination of the targeting of selected protein isoforms further demonstrated that AS at both the 5′ and 3′ region of a gene can affect the inclusion of PTS2 and PTS1, respectively. This work underscores the importance of AS on the global regulation of peroxisome protein targeting.
Journal Article
A Novel FRET Approach Quantifies the Interaction Strength of Peroxisomal Targeting Signals and Their Receptor in Living Cells
by
Hartig, Andreas
,
Hochreiter, Bernhard
,
Schmid, Johannes A.
in
Amino Acid Motifs
,
Amino Acid Sequence
,
Animals
2020
Measuring Förster–resonance–energy–transfer (FRET) efficiency allows the investigation of protein–protein interactions (PPI), but extracting quantitative measures of affinity necessitates highly advanced technical equipment or isolated proteins. We demonstrate the validity of a recently suggested novel approach to quantitatively analyze FRET-based experiments in living mammalian cells using standard equipment using the interaction between different type-1 peroxisomal targeting signals (PTS1) and their soluble receptor peroxin 5 (PEX5) as a model system. Large data sets were obtained by flow cytometry coupled FRET measurements of cells expressing PTS1-tagged EGFP together with mCherry fused to the PTS1-binding domain of PEX5, and were subjected to a fitting algorithm extracting a quantitative measure of the interaction strength. This measure correlates with results obtained by in vitro techniques and a two-hybrid assay, but is unaffected by the distance between the fluorophores. Moreover, we introduce a live cell competition assay based on this approach, capable of depicting dose- and affinity-dependent modulation of the PPI. Using this system, we demonstrate the relevance of a sequence element next to the core tripeptide in PTS1 motifs for the interaction strength between PTS1 and PEX5, which is supported by a structure-based computational prediction of the binding energy indicating a direct involvement of this sequence in the interaction.
Journal Article
A non-canonical fungal peroxisome PTS-1 signal, SYM, and its evolutionary aspects
2025
Proteins localized to peroxisomes, particularly those expressed under specific conditions or in low abundance, are often undetected by routine proteomics methods due to detection sensitivity limits. In silico identification and experimental validation of peroxisomal targeting signals (PTSs) offer a reliable alternative. We demonstrate that SYM, a non-canonical plant PTS-1 signal, functions similarly in
Aspergillus nidulans
, as GFP tagged with a SYM C-terminal tripeptide localizes to peroxisomes. One of two native
A. nidulans
proteins with C-terminal SYM tripeptide shows weak peroxisomal localization alongside cytoplasmic presence, indicating that only a subset of proteins with non-canonical signals access peroxisomes.
In silico
analysis of 1,010 fungal genomes identified diverse SYM-proteins with variable functions, suggesting that non-canonical PTS-1 signals may evolve spontaneously. Two-thirds of SYM-proteins are predicted to localize to specific intracellular compartments other than the peroxisome. We propose that despite their predicted localization, these proteins possessing SYM as a non-canonical peroxisomal signal might also have peroxisomal presence. Among SYM-proteins, pectinesterases, known plant pathogen virulence factors, were frequent. Notably, 25% of fungal pectinesterases harbor non-canonical PTS-1 signals, suggesting that partial peroxisomal localization of pectinesterases has evolved convergently. This suggests that partial peroxisomal localization may enhance protein functional flexibility, contributing to the organism’s adaptability.
Journal Article
Uncovering targeting priority to yeast peroxisomes using an in-cell competition assay
2020
Approximately half of eukaryotic proteins reside in organelles. To reach their correct destination, such proteins harbor targeting signals recognized by dedicated targeting pathways. It has been shown that differences in targeting signals alter the efficiency in which proteins are recognized and targeted. Since multiple proteins compete for any single pathway, such differences can affect the priority for which a protein is catered. However, to date the entire repertoire of proteins with targeting priority, and the mechanisms underlying it, have not been explored for any pathway. Here we developed a systematic tool to study targeting priority and used the Pex5-mediated targeting to yeast peroxisomes as a model. We titrated Pex5 out by expressing high levels of a Pex5-cargo protein and examined how the localization of each peroxisomal protein is affected. We found that while most known Pex5 cargo proteins were outcompeted, several cargo proteins were not affected, implying that they have high targeting priority. This priority group was dependent on metabolic conditions. We dissected the mechanism of priority for these proteins and suggest that targeting priority is governed by different parameters, including binding affinity of the targeting signal to the cargo factor, the number of binding interfaces to the cargo factor, and more. This approach can be modified to study targeting priority in various organelles, cell types, and organisms.
Journal Article
Drosophila models uncover substrate channeling effects on phospholipids and sphingolipids in peroxisomal biogenesis disorders
by
Welti, Ruth
,
Wangler, Michael F.
,
McNew, James A.
in
Abnormalities
,
Animals
,
ATPases Associated with Diverse Cellular Activities
2025
Peroxisomal Biogenesis Disorders Zellweger Spectrum (PBD-ZSD) disorders are a group of autosomal recessive defects in peroxisome formation that produce a multi-systemic disease presenting at birth or in childhood. Well documented clinical biomarkers such as elevated very long chain fatty acids (VLCFA) are key biochemical diagnostic findings in these conditions. Additional, secondary biochemical alterations such as elevated very long chain lysophosphatidylcholines are allowing newborn screening for peroxisomal disease. In addition, a more widespread impact on metabolism and lipids is increasingly being documented by metabolomic and lipidomic studies. Here we utilize Drosophila models of pex2 and pex16 as well as human plasma from individuals with PEX1 mutations. We identify phospholipid abnormalities in Drosophila larvae and brain characterized by differences in the quantities of phosphatidylcholine (PC) and phosphatidylethanolamines (PE) with long chain lengths and reduced levels of intermediate chain lengths. For diacylglycerol (DAG), the precursor of PE and PC through the Kennedy pathway, the intermediate chain lengths are increased suggesting an imbalance between DAGs and PE and PC that suggests the two acyl chain pools are not in equilibrium. Altered acyl chain lengths are also observed in PE ceramides in the fly models. Interestingly, plasma from human subjects exhibit phospholipid alterations similar to the fly model. Moreover, human plasma shows reduced levels of sphingomyelin with 18 and 22 carbon lengths but normal levels of C24. Our results suggest that peroxisomal biogenesis defects alter shuttling of the acyl chains of multiple phospholipid and ceramide lipid classes. In contrast, DAG species with intermediate fatty acids are actually more abundant in PBD. These data suggest an imbalance between de novo synthesis of PC and PE through the Kennedy pathway and remodeling of existing PC and PE through the Lands cycle. This imbalance is likely due to overabundance of very long acyl chains in PBD and a subsequent imbalance due to substrate channeling effects. Given the fundamental role of phospholipid and sphingolipids in nervous system functions, these observations suggest PBD-ZSD are diseases characterized by widespread cell membrane lipid abnormalities.
Journal Article
Multi-targeted trehalose-6-phosphate phosphatase I harbors a novel peroxisomal targeting signal 1 and is essential for flowering and development
by
Lillo, Cathrine
,
Dugassa, Nemie-Feyissa
,
Thelen, Jay J.
in
Agriculture
,
Arabidopsis - enzymology
,
Arabidopsis - genetics
2020
Main conclusion
This work reveals information about new peroxisomal targeting signals type 1 and identifies trehalose-6-phosphate phosphatase I as multitargeted and is implicated in plant development, reproduction, and stress response.
A putative, non-canonical peroxisomal targeting signal type 1 (PTS1) Pro-Arg-Met > was identified in the extreme C-terminus of trehalose-6-phosphate phosphatase (TPP)I. TPP catalyzes the final step of trehalose synthesis, and the enzyme was previously characterized to be nuclear only (Krasensky et al. in Antioxid Redox Signal 21(9):1289–1304, 2014). Here we show that the TPPI C-terminal decapeptide ending with Pro-Arg-Met > or Pro-Lys-Met > can indeed function as a PTS1. Upon transient expression in two plant expression systems, the free C- or N-terminal end led to the full-length TPPI targeting to peroxisomes and plastids, respectively. The nucleus and nucleolus targeting of the full-length TPPI was observed in both cases. The homozygous T-DNA insertion line of
TPPI
showed a pleiotropic phenotype including smaller leaves, shorter roots, delayed flowering, hypersensitivity to salt, and a sucrose dependent seedling development. Our results identify novel PTS1s, and TPPI as a protein multi-targeted to peroxisomes, plastids, nucleus, and nucleolus. Altogether our findings implicate an essential role for TPPI in development, reproduction, and cell signaling.
Journal Article
Distinguishing PEX2 and PEX16 gene variant severity for mild, severe and atypical peroxisome biogenesis disorders
2025
Peroxisomal biogenesis disorders (PBD) are autosomal recessive diseases caused by mutations in specific PEX genes that impair peroxisome formation, leading to multi-systemic failure. Symptoms vary, even in patients with variants in the same PEX gene. Our goal is to select PEX mutations and use Drosophila to model a severity spectrum based on genotype−phenotype correlations. Utilizing KozakGAL4 (KZ) cassettes, we replaced the coding sequence of Pex with a GAL4 driver, ideal for making ‘humanized’ flies in which human PEX can replace the fly loss. We generated Pex2KZ and Pex16KZ lines and assessed them in various behavior assays, confirming their severe phenotypes. We performed rescue with human reference, variant PEX2 and PEX16 alleles, and phenotypic rescue was observed when human PEX2Ref or PEX16Ref were expressed in Pex2KZ or Pex16KZ flies, respectively. We identified a severity spectrum for PEX2 and PEX16 alleles, with some missense mutations exhibiting severity comparable to truncations. Alleles linked to mild PBD showed partial rescue, while variants associated with atypical ataxia could fully rescue. Drosophila humanization is an effective method to study the range of severity of PBD.
Journal Article