Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
2,198
result(s) for
"Peroxisome Proliferator-Activated Receptors - chemistry"
Sort by:
The Opportunities and Challenges of Peroxisome Proliferator-Activated Receptors Ligands in Clinical Drug Discovery and Development
by
Zhai, Yonggong
,
Hong, Fan
,
Xu, Pengfei
in
Animals
,
Anti-Inflammatory Agents - therapeutic use
,
Diabetes
2018
Peroxisome proliferator-activated receptors (PPARs) are a well-known pharmacological target for the treatment of multiple diseases, including diabetes mellitus, dyslipidemia, cardiovascular diseases and even primary biliary cholangitis, gout, cancer, Alzheimer’s disease and ulcerative colitis. The three PPAR isoforms (α, β/δ and γ) have emerged as integrators of glucose and lipid metabolic signaling networks. Typically, PPARα is activated by fibrates, which are commonly used therapeutic agents in the treatment of dyslipidemia. The pharmacological activators of PPARγ include thiazolidinediones (TZDs), which are insulin sensitizers used in the treatment of type 2 diabetes mellitus (T2DM), despite some drawbacks. In this review, we summarize 84 types of PPAR synthetic ligands introduced to date for the treatment of metabolic and other diseases and provide a comprehensive analysis of the current applications and problems of these ligands in clinical drug discovery and development.
Journal Article
In silico and in vitro investigations reveal pan-PPAR agonist activity and anti-NAFLD efficacy of polydatin by modulating hepatic lipid-energy metabolism
by
Puri, Sonakshi
,
Muzaffar-Ur-Rehman, Mohammed
,
Deepa, P. R.
in
631/114
,
631/154/1435
,
631/154/555
2025
Polydatin (PD), a stilbenoid resveratrol-derivative in
Vitaceae
,
Liliaceae
,
and Leguminosae
, exhibits pharmacological protection in metabolic disorders. This study investigated Polydatin, as a potential pan-PPAR agonist for treating non-alcoholic fatty liver disease (NAFLD). High-throughput-virtual-screening (HTVS) was performed to identify potential pan-PPAR agonists, followed by in vitro testing of Polydatin in HepG2 steatosis model. Effects on lipid metabolism and oxidative stress, PPAR signaling gene expression analysis, and GC-MS profiling were compared with the hepatoprotectant Silymarin. Pan-PPAR targeted HTVS of PhytoHub natural products database, followed by molecular docking/dynamics simulations, revealed lead-candidate, Polydatin, which was tested in steatotic cells for gene and protein deregulations by qRT-PCR and western blot, followed by GC-MS analysis of biochemical metabolites. HTVS revealed 53 potential pan-PPAR agonists. Molecular docking and dynamics simulations suggested that PD, a stable ligand for PPARs (α,β/δ,γ), exhibited strong binding. Polydatin treatment decreased ALT, triglycerides, and oxidative stress, wherein ROS and malondialdehyde levels decreased by 60.94% and 28%, respectively. PD upregulated PPARs, AMPK, GLUT2, and CPT1α, while downregulating lipogenic enzymes (ACC1, FASN, SCD1). GC-MS analysis revealed Polydatin mediated impact on saturated FFAs-palmitic acid, stearic acid, and unsaturated fatty acid product of SCD1, oleic acid. HTVS identified PD as a promising pan-PPAR agonist, which favorably ameliorated changes in lipid, glucose, and overall energy metabolism in steatotic NAFLD, by modulating PPAR(α,β/δ,γ) expressions and associated downstream lipogenic and lipid-utilization mechanisms, supporting anti-steatotic efficacy of Polydatin.
Journal Article
Targeting lipid-sensing nuclear receptors PPAR (α, γ, β/δ): HTVS and molecular docking/dynamics analysis of pharmacological ligands as potential pan-PPAR agonists
by
Puri, Sonakshi
,
Sankaranarayanan, Murugesan
,
Mandal, Sumit Kumar
in
Agonists
,
Fatty liver
,
Ligands
2024
The global prevalence of obesity-related systemic disorders, including non-alcoholic fatty liver disease (NAFLD), and cancers are rapidly rising. Several of these disorders involve peroxisome proliferator-activated receptors (PPARs) as one of the key cell signaling pathways. PPARs are nuclear receptors that play a central role in lipid metabolism and glucose homeostasis. They can activate or suppress the genes responsible for inflammation, adipogenesis, and energy balance, making them promising therapeutic targets for treating metabolic disorders. In this study, an attempt has been made to screen novel PPAR pan-agonists from the ZINC database targeting the three PPAR family of receptors (α, γ, β/δ), using molecular docking and molecular dynamics (MD) simulations. The top scoring five ligands with strong binding affinity against all the three PPAR isoforms were eprosartan, canagliflozin, pralatrexate, sacubitril, olaparib. The ADMET analysis was performed to assess the pharmacokinetic profile of the top 5 molecules. On the basis of ADMET analysis, the top ligand was subjected to MD simulations, and compared with lanifibranor (reference PPAR pan-agonist). Comparatively, the top-scoring ligand showed better protein–ligand complex (PLC) stability with all the PPARs (α, γ, β/δ). When experimentally tested in in vitro cell culture model of NAFLD, eprosartan showed dose dependent decrease in lipid accumulation and oxidative damage. These outcomes suggest potential PPAR pan-agonist molecules for further experimental validation and pharmacological development, towards treatment of PPAR-mediated metabolic disorders.
Journal Article
Cloning retinoid and peroxisome proliferator-activated nuclear receptors of the Pacific oyster and in silico binding to environmental chemicals
2017
Disruption of nuclear receptors, a transcription factor superfamily regulating gene expression in animals, is one proposed mechanism through which pollution causes effects in aquatic invertebrates. Environmental pollutants have the ability to interfere with the receptor's functions through direct binding and inducing incorrect signals. Limited knowledge of invertebrate endocrinology and molecular regulatory mechanisms, however, impede the understanding of endocrine disruptive effects in many aquatic invertebrate species. Here, we isolated three nuclear receptors of the Pacific oyster, Crassostrea gigas: two isoforms of the retinoid X receptor, CgRXR-1 and CgRXR-2, a retinoic acid receptor ortholog CgRAR, and a peroxisome proliferator-activated receptor ortholog CgPPAR. Computer modelling of the receptors based on 3D crystal structures of human proteins was used to predict each receptor's ability to bind to different ligands in silico. CgRXR showed high potential to bind and be activated by 9-cis retinoic acid and the organotin tributyltin (TBT). Computer modelling of CgRAR revealed six residues in the ligand binding domain, which prevent the successful interaction with natural and synthetic retinoid ligands. This supports an existing theory of loss of retinoid binding in molluscan RARs. Modelling of CgPPAR was less reliable due to high discrepancies in sequence to its human ortholog. Yet, there are suggestions of binding to TBT, but not to rosiglitazone. The effect of potential receptor ligands on early oyster development was assessed after 24h of chemical exposure. TBT oxide (0.2μg/l), all-trans retinoic acid (ATRA) (0.06 mg/L) and perfluorooctanoic acid (20 mg/L) showed high effects on development (>74% abnormal developed D-shelled larvae), while rosiglitazone (40 mg/L) showed no effect. The results are discussed in relation to a putative direct (TBT) disruption effect on nuclear receptors. The inability of direct binding of ATRA to CgRAR suggests either a disruptive effect through a pathway excluding nuclear receptors or an indirect interaction. Our findings provide valuable information on potential mechanisms of molluscan nuclear receptors and the effects of environmental pollution on aquatic invertebrates.
Journal Article
Activation of RXR-PPAR heterodimers by organotin environmental endocrine disruptors
by
Vivat‐Hannah, Valérie
,
Bourguet, William
,
Roecklin, Dominique
in
3D structure
,
Antifouling substances
,
Binding sites
2009
The nuclear receptor retinoid X receptor‐α (RXR‐α)–peroxisome proliferator‐activated receptor‐γ (PPAR‐γ) heterodimer was recently reported to have a crucial function in mediating the deleterious effects of organotin compounds, which are ubiquitous environmental contaminants. However, because organotins are unrelated to known RXR‐α and PPAR‐γ ligands, the mechanism by which these compounds bind to and activate the RXR‐α–PPAR‐γ heterodimer at nanomolar concentrations has remained elusive. Here, we show that tributyltin (TBT) activates all three RXR–PPAR‐α, ‐γ, ‐δ heterodimers, primarily through its interaction with RXR. In addition, the 1.9 Å resolution structure of the RXR‐α ligand‐binding domain in complex with TBT shows a covalent bond between the tin atom and residue Cys 432 of helix H11. This interaction largely accounts for the high binding affinity of TBT, which only partly occupies the RXR‐α ligand‐binding pocket. Our data allow an understanding of the binding and activation properties of the various organotins and suggest a mechanism by which these tin compounds could affect other nuclear receptor signalling pathways.
Journal Article
Small-Molecule Modulation of PPARs for the Treatment of Prevalent Vascular Retinal Diseases
2020
Vascular-related retinal diseases dramatically impact quality of life and create a substantial burden on the healthcare system. Age-related macular degeneration, diabetic retinopathy, and retinopathy of prematurity are leading causes of irreversible blindness. In recent years, the scientific community has made great progress in understanding the pathology of these diseases and recent discoveries have identified promising new treatment strategies. Specifically, compelling biochemical and clinical evidence is arising that small-molecule modulation of peroxisome proliferator-activated receptors (PPARs) represents a promising approach to simultaneously address many of the pathological drivers of these vascular-related retinal diseases. This has excited academic and pharmaceutical researchers towards developing new and potent PPAR ligands. This review highlights recent developments in PPAR ligand discovery and discusses the downstream effects of targeting PPARs as a therapeutic approach to treating retinal vascular diseases.
Journal Article
Extracting ligands from receptors by reversed targeted molecular dynamics
by
Wolf, Romain M.
in
Animal Anatomy
,
Benzhydryl Compounds - chemistry
,
Benzhydryl Compounds - metabolism
2015
Short targeted MD trajectories are used to expel ligands from binding sites. The expulsion is governed by a linear increase of the target RMSD value, growing from zero to an arbitrary chosen final RMSD that forces the ligand to a selected distance outside of the receptor. The RMSD lag (i.e., the difference between the imposed and the actual RMSD) can be used to follow barriers encountered by the ligand during its way out of the receptor. The force constant used for the targeted MD can transform the RMSD lag into a strain energy. Integration of the (time-dependent) strain energy over time yields a value with the dimensions of “action” (i.e, energy multiplied by time) and can serve as a measure for the overall effort required to extract the ligand from its binding site. Possibilities to compare (numerically and graphically) the randomly detected exit pathways are discussed. As an example, the method is tested on the exit of bisphenol A from the human estrogen-related receptor
γ
and of GW0072 from the peroxysome proliferator activated receptor.
Journal Article
ppargc1a controls nephron segmentation during zebrafish embryonic kidney ontogeny
by
Poureetezadi, Shahram Jevin
,
Lahne, Manuela
,
Addiego, Amanda
in
Amino Acid Sequence
,
Animals
,
Bezafibrate - pharmacology
2018
Nephron segmentation involves a concert of genetic and molecular signals that are not fully understood. Through a chemical screen, we discovered that alteration of peroxisome proliferator-activated receptor (PPAR) signaling disrupts nephron segmentation in the zebrafish embryonic kidney (Poureetezadi et al., 2016 ). Here, we show that the PPAR co-activator ppargc1a directs renal progenitor fate. ppargc1a mutants form a small distal late (DL) segment and an expanded proximal straight tubule (PST) segment. ppargc1a promotes DL fate by regulating the transcription factor tbx2b, and restricts expression of the transcription factor sim1a to inhibit PST fate. Interestingly, sim1a restricts ppargc1a expression to promote the PST, and PST development is fully restored in ppargc1a/sim1a-deficient embryos, suggesting Ppargc1a and Sim1a counterbalance each other in an antagonistic fashion to delineate the PST segment boundary during nephrogenesis. Taken together, our data reveal new roles for Ppargc1a during development, which have implications for understanding renal birth defects.
Journal Article
System biology-based assessment of the molecular mechanism of epigallocatechin gallate in Parkinson’s disease: via network pharmacology, in-silico evaluation & in-vitro studies
by
Emran, Talha Bin
,
Fanai, Hannah Lalengzuali
,
Chand, Jagdish
in
631/114
,
631/154
,
Catechin - analogs & derivatives
2025
Epigallocatechin gallate (EGCG) compound (IMPHY000226) has the potential to modulate multiple molecular mechanisms involved in Parkinson’s disease. Multiple targets such as SIRT3, FOXO1, PRKAA1, PPARGC1A, and CREBBP directly regulate reactive oxygen species levels and oxidative stress, suggesting that targeting these genes could help prevent further cellular damage. EGCG targets were identified using Swiss target prediction, revealing 31 targets modulated by EGCG. Specific keywords were used to identify 4663 targets related to PD modulation. The network was constructed and analyzed using the node and edge counts. Clustering analysis identified specific target groups with high edge counts and Kappa scores, indicating potential key players in PD modulation. The targets SIRT3, FOXO1, and PPARGC1A were predicted to have the highest binding energies via dual algorithm-based molecular docking studies. The MD simulation studies were performed for the highest-docked targets, SIRT3, FOXO1, and PPARGC1A, to assess the stability and interactions. The cell viability assays were conducted at various dosage concentrations for EGCG and resveratrol, which provided dose-dependent effects on cell survival. In the toxicity-induced group, the highest % cell viability of 94% and 81% was observed at a dosage of 6.25 µg/mL and 12.5 µg/mL. The toxicity-induced gene expression studies indicated that the EGCG upregulated the targets SOD2, FOXO1, and GPx. EGCG and resveratrol upregulated the targets SOD2, FOXO1, and GPx at a dosage concentration of 12.5 µg/mL. EGCG was found to be more potent than the resveratrol molecule, indicating that EGCG can be used as an anti-Parkinson agent.
Journal Article
Pharmacophore modeling and parallel screening for PPAR ligands
by
Schuster, Daniela
,
Markt, Patrick
,
Kirchmair, Johannes
in
Binding Sites
,
Computer aided design
,
Computer Simulation
2007
We describe the generation and validation of pharmacophore models for PPARs, as well as a large scale validation of the parallel screening approach by screening PPAR ligands against a large database of structure-based models. A large test set of 357 PPAR ligands was screened against 48 PPAR models to determine the best models for agonists of PPAR-alpha, PPAR-delta, and PPAR-gamma. Afterwards, a parallel screen was performed using the 357 PPAR ligands and 47 structure-based models for PPARs, which were integrated into a 1537 models comprising in-house pharmacophore database, to assess the enrichment of PPAR ligands within the PPAR hypotheses. For these purposes, we categorized the 1537 database models into 181 protein targets and developed a score that ranks the retrieved targets for each ligand. Thus, we tried to find out if the concept of parallel screening is able to predict the correct pharmacological target for a set of compounds. The PPAR target was ranked first more often than any other target. This confirms the ability of parallel screening to forecast the pharmacological active target for a set of compounds.
Journal Article