Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
4,074 result(s) for "Perspective Review"
Sort by:
Stability of dimensionally stable anode for chlorine evolution reaction
Chlorine (Cl 2 ) is one of the most important chemicals produced by the electrolysis of brine solutions and is a key raw material for many areas of industrial chemistry. For nearly half a century, dimensionally stable anode (DSA) made from a mixture of RuO 2 and TiO 2 solid oxides coated on Ti substrate has been the most widely used electrode for chlorine evolution reaction (CER). In harsh operating environments, the stability of DSAs remains a major challenge greatly affecting their lifetime. The deactivation of DSAs significantly increases the cost of the chlor-alkali industry due to the corrosion of Ru and the formation of the passivation layer TiO 2 . Therefore, it is urgent to develop catalysts with higher activity and stability, which requires a thorough understanding of the deactivation mechanism of DSA catalysts. This paper reviews existing references on the deactivation mechanisms of DSA catalysts, including both experimental and theoretical studies. Studies on how CER selectivity affects electrode stability are also discussed. Furthermore, studies on the effects of the preparation process, elemental composition, and surface/interface structures on the DSA stability and corresponding improvement strategies are summarized. The development of other non-DSA-type catalysts with comparable stability is also reviewed, and future opportunities in this exciting field are also outlined.
Emerging porous nanosheets: From fundamental synthesis to promising applications
Metal-organic framework (MOF) nanosheets and covalent organic framework (COF) nanosheets as emerging porous materials nanosheets have captured increasing attention owing to their attractive properties originating from the advantages of large lateral size, ultrathin thickness, tailorable physiochemical environment, flexibility and highly accessible active sites on surface, and the applications of them have been explored in a wide range of fields. Although MOF and COF nanosheets own many similar properties, their applications in various fields show significant differences, probably due to their different compositions and bonding modes. Hence, we summarize the recent progress of MOF and COF nanosheets by comparative analysis on their advantages and limitations in synthesis and applications, providing a more profound and full-scale perspective for researchers or beginners to understand this field. Herein, the categories of preparation methods of MOF and COF nanosheets are firstly discussed, including top-down and bottom-up methods. Secondly, the applications of MOF and COF nanosheets for separation, catalysis, sensing and energy storage are summarized. Finally, based on current achievements, we put forward our personal insights into the challenges and outlooks on the synthesis, characterizations, and promising applications for future research of MOF and COF nanosheets.
Recent advances in photocatalytic CO2 cycloaddition reaction
Carbon dioxide (CO 2 ) is a principal greenhouse gas with a substantial impact on global climate change. The photocatalytic reduction of CO 2 represents an economically viable and environmentally benign approach. This technique involves the catalysis of the reaction between CO 2 and epoxides under photocatalytic conditions to yield cyclic carbonates. Notably, this process has garnered significant attention due to its high atomic efficiency and alignment with green chemistry principles. Increasingly, photocatalysts are employed to facilitate the synthesis of cyclic carbonates, demonstrating outstanding performance even under natural light. This review evaluates the current state of research on the photocatalytic cycloaddition of CO 2 with epoxides, analyzes the reaction mechanism and key influencing factors, and provides a comparative summary of the photocatalysts developed in this domain. Additionally, this paper underscores the significance of the reaction devices. The paper explores reaction devices with potential applications for photocatalytic CO 2 and epoxides and envisions future integrations of CO 2 photocatalytic cycloaddition reactions with advanced reaction devices for practical applications in this area.
Advances of CNT-based systems in thermal management
Effective thermal management has become extremely urgent for electronics due to the massive heat originated from the ever-rising power density. With the merits of high thermal conductivity, good chemical stability and desirable mechanical properties, carbon nanotubes (CNTs) are considered to have great potential to be widely used in heat dissipation devices. This article describes the progress on thermal conductivity of CNT-reinforced composites, aligned CNT materials (aligned CNT arrays, films/buckypapers and fibers) as high thermal conductors, experimental and theoretical results of CNT-substrate interface resistance, and utilizations of CNTs in the passive heat dissipation (natural convection, heat radiation, and phase-change heat transfer). Finally, the challenges and prospects are discussed to provide some hints in the future studies. It is believed that CNTs can play an important role in thermal management of electronics, especially in the portable electronic devices.
Graphene: A promising candidate for charge regulation in high-performance lithium-ion batteries
The development of rechargeable lithium-ion batteries (LIBs) is being driven by the ever-increasing demand for high energy density and excellent rate performance. Charge transfer kinetics and polarization theory, considered as basic principles for charge regulation in the LIBs, indicate that the rapid transfer of both electrons and ions is vital to the electrochemical reaction process. Graphene, a promising candidate for charge regulation in high-performance LIBs, has received extensive investigations due to its excellent carrier mobility, large specific surface area and structure tunability, etc. Recent progresses on the structural design and interfacial modification of graphene to regulate the charge transport in LIBs have been summarized. Besides, the structure-performance relationships between the structure of the graphene and its dedicated applications for LIBs have also been clarified in detail. Taking graphene as a typical example to explore the mechanism of charge regulation will outline ways to further understand and improve carbon-based nanomaterials towards the next generation of electrochemical energy storage devices.
Cornerstone of molecular spintronics: Strategies for reliable organic spin valves
Organic spin valve (OSV), one of the most promising and representative devices involving spin injection, transport and detection, has drawn tremendous attention owing to their ultra-long spin relaxation time in the field of molecular spintronics. Since the first demonstration of truly worked vertical OSV device in 2004, efforts in enhancement of high performance and pursuit of spin-related nature have been devoted in related field. It offers a new opportunity to develop the integrated flexible multi-functional arrays based on spintronics in the future. However, the unreliable working state in OSVs due to the lack of exploration on interface control will cause severe impact on the performance evaluation and further restrict their practical application. Herein, we focus on the recent progress in strategies for reliable fabrication and evaluation of typical OSVs in vertical configuration. Firstly, the challenges in protection of two spin interface properties and identification of spin-valve-like signals were proposed. Then, three points for attention including selection of bottom electrodes, optimization of organic spacer, and prevention of metal penetration to improve the device performance and reliability were mentioned. Particularly, various modified strategies to solve the “dead layer” issue were highlighted. Furthermore, we discussed the general protocols in the reliable evaluation of OSVs’ performance and transport mechanism identification. Notably, several key fundamentals resulting in spurious magnetoresistance (MR) response were illustrated. Finally, we also highlighted the future perspectives on spintronic devices of organic materials.
Electrocatalytic coupling of anodic nitrogen oxidation and cathodic nitrate reduction for ammonia synthesis from air and water
Ammonia plays a vital role in present agriculture and industry, and is also regarded as a next-generation clean energy carrier. The development of electrocatalysis raises an opportunity to make ammonia synthesis compatible with intermittent and variable renewable energy sources such as solar and wind energy. However, the direct ammonia electrosynthesis from N 2 reduction is still challenging due to the much easier hydrogen evolution competition reaction. In this perspective, we propose a novel strategy for ammonia electrosynthesis from air and water based on the coupling of anodic nitrogen oxidation and cathodic nitrate reduction. Possible methods for breaking the bottlenecks of anodic nitrogen oxidation and cathodic nitrate reduction are discussed separately. After that, key issues that need to be considered in the coupled system are proposed for the application of this strategy.
Transforming clinical virology with AI, machine learning and deep learning: a comprehensive review and outlook
In the rapidly evolving field of clinical virology, technological advancements have always played a pivotal role in driving transformative changes. This comprehensive review delves into the burgeoning integration of artificial intelligence (AI), machine learning, and deep learning into virological research and practice. As we elucidate, these computational tools have significantly enhanced diagnostic precision, therapeutic interventions, and epidemiological monitoring. Through in-depth analyses of notable case studies, we showcase how algorithms can optimize viral genome sequencing, accelerate drug discovery, and offer predictive insights into viral outbreaks. However, with these advancements come inherent challenges, particularly in data security, algorithmic biases, and ethical considerations. Addressing these challenges head-on, we discuss potential remedial measures and underscore the significance of interdisciplinary collaboration between virologists, data scientists, and ethicists. Conclusively, this review posits an outlook that anticipates a symbiotic relationship between AI-driven tools and virology, heralding a new era of proactive and personalized patient care.
A review of nonlinear FFT-based computational homogenization methods
Since their inception, computational homogenization methods based on the fast Fourier transform (FFT) have grown in popularity, establishing themselves as a powerful tool applicable to complex, digitized microstructures. At the same time, the understanding of the underlying principles has grown, in terms of both discretization schemes and solution methods, leading to improvements of the original approach and extending the applications. This article provides a condensed overview of results scattered throughout the literature and guides the reader to the current state of the art in nonlinear computational homogenization methods using the fast Fourier transform.
Population genetic structure: Where, what, and why?
Biodiversity is crucial for humankind. It encompasses three main levels: ecosystem, species, and intraspecific genetic diversity. Species consist of populations that exhibit deoxyribonucleic acid (DNA) variability, which is a key component of intraspecific genetic diversity. In turn, intraspecific genetic diversity is directly linked with the term population genetic structure (PGS). There is a great deal of uncertainty and confusion surrounding the concept of the PGS of species in the scientific literature, yet the term PGS is central to population genetics, and future research is expected to focus on the evolutionary continuum from populations to species. Therefore, it is necessary for current biologists and the next generation of scientists to acquire a better understanding of a PGS, both as a term and a concept, as well as the various roles PGSs play within a biodiversity context. This knowledge can then be applied to the expansion of both practical and theoretical science. Finding answers and reaching a consensus among the scientific community on certain questions regarding PGSs could expand the horizons of population genetics and related research disciplines. The major areas of interest and research are PGSs’ roles in the processes of microevolution and speciation, the sustainable use of natural resources, and the conservation of genetic diversity. Other important aspects of this perspective review include proposals for scientific definitions of some terms and concepts, as well as new perspectives and explanations that could be used as a basis for future theoretical models and applied research on PGSs. In conclusion, a PGS should be viewed as a fragile genetic mosaic encompassing at least three spatial dimensions and one temporal dimension.