Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
30,286 result(s) for "Pesticides - analysis"
Sort by:
Exposure to pesticides in utero impacts the fetal immune system and response to vaccination in infancy
The use of pesticides to reduce mosquito vector populations is a cornerstone of global malaria control efforts, but the biological impact of most pesticides on human populations, including pregnant women and infants, is not known. Some pesticides, including carbamates, have been shown to perturb the human immune system. We measure the systemic absorption and immunologic effects of bendiocarb, a commonly used carbamate pesticide, following household spraying in a cohort of pregnant Ugandan women and their infants. We find that bendiocarb is present at high levels in maternal, umbilical cord, and infant plasma of individuals exposed during pregnancy, indicating that it is systemically absorbed and trans-placentally transferred to the fetus. Moreover, bendiocarb exposure is associated with numerous changes in fetal immune cell homeostasis and function, including a dose-dependent decrease in regulatory CD4 T cells, increased cytokine production, and inhibition of antigen-driven proliferation. Additionally, prenatal bendiocarb exposure is associated with higher post-vaccination measles titers at one year of age, suggesting that its impact on functional immunity may persist for many months after birth. These data indicate that in utero bendiocarb exposure has multiple previously unrecognized biological effects on the fetal immune system. Control of mosquito populations using pesticides is important for malaria elimination, but effects of pesticides on humans aren’t well understood. Here, Prahl et al. show in a cohort of pregnant Ugandan women and their infants that household spraying with bendiocarb affects the fetal immune system and response to vaccination in infancy.
Analysis of Pesticide Residues on Fruit Using Swab Spray Ionization Mass Spectrometry
The vast quantity and high variety of pesticides globally used in agriculture entails considerable risks for the environment and requires ensuring the safety of food products. Therefore, powerful analytical tools are needed to acquire qualitative and quantitative data for monitoring pesticide residues. The development of ambient ionization mass spectrometry methods in the past two decades has demonstrated numerous ways to generate ions under atmospheric conditions and simultaneously to reduce the need for extended sample preparation and circumvent chromatographic separation prior to mass analysis. Swab spray ionization enables the generation of ions directly from swabs via the application of high voltage and solvent flow. In this study, swab sampling of fruit surfaces and subsequent ionization directly from the swab in a modified electrospray ion source was employed for the screening and quantitation of pesticide residues. Aspects regarding sample collection, sampling efficacy on different surfaces, and swab background are discussed. The effect of solvent composition on pesticide-sodium adduct formation and the suppression of ionization by the background matrix have been investigated. Furthermore, a novel approach for the quantitation of pesticide residues based on depletion curve areas is presented. It is demonstrated that swab spray ionization is an effective and quick method for spectral library-based identification and the quantitative analysis of polar contact pesticide residues on food.
Pesticide Residues in Vegetables and Fruits from Farmer Markets and Associated Dietary Risks
The use of pesticides leads to an increase in agricultural production but also causes harmful effects on human health when excessively used. For safe consumption, pesticide residues should be below the maximum residual limits (MRLs). In this study, the residual levels of pesticides in vegetables and fruits collected from farmers’ markets in Sharkia Governorate, Egypt were investigated using LC-MS/MS and GC-MS/MS. A total number of 40 pesticides were detected in the tested vegetable and fruit samples. Insecticides were the highest group in detection frequency with 85% and 69% appearance in vegetables and fruits, respectively. Cucumber and apple samples were found to have the highest number of pesticide residues. The mean residue levels ranged from 7 to 951 µg kg−1 (in vegetable samples) and from 8 to 775 µg kg−1 (in fruit samples). It was found that 35 (40.7%) out of 86 pesticide residues detected in vegetables and 35 (38.9%) out of 90 pesticide residues detected in fruits exceeded MRLs. Results for lambda-cyhalothrin, fipronil, dimothoate, and omethoate in spinach, zucchini, kaki, and strawberry, respectively, can cause acute or chronic risks when consumed at 0.1 and 0.2 kg day−1. Therefore, it is necessary for food safety and security to continuously monitor pesticide residues in fruits and vegetables in markets.
Status of pesticide residues in water, sediment, and fishes of Chilika Lake, India
Chilika Lake is the largest coastal lagoon in Asia and the second largest in the world covering an area of 1100 km 2 and spread over three districts of Odisha state of India. It is the first Indian wetland designated as a wetland of international importance under the Ramsar Convention in 1981. The lake ecosystem sustains large and diversified resources of plants and animals including fisheries. Pollution of the ecosystem caused by residues of pesticides originating from different sources was assessed through multiple sampling from 2012 to 2016 from three potential sites of contamination, viz., Palur Bridge, Daya River Estuary, and Makara River. Incidence of organochlorinated (OC) pesticide residues was noticed in about 25% water samples. HCH (α, γ&δ), DDD (op | ), DDE (op | &pp. | ) and heptachlor were the OCs detected in concentration varying from 0.025 to 23.4 μg/l. None of the eight targeted synthetic pyrethroid (SP) pesticides was found in water, but among the organophosphates (OP), chlorpyrifos (0.019–2.73 μg/l), and dichlorvos (0.647 μg/l) were recorded. In sediment samples, residues of OC or OP pesticides were not present, but one SP pesticide was recorded. Fish samples were contaminated to the extent of 55%, mostly with residues of OCs and OPs and less with SPs. However, their concentrations were below the permissible limit, so there was no direct threat of health hazards to humans.
The impact of landscape structure on pesticide exposure to honey bees
Pesticides may have serious negative impacts on bee populations. The pesticide exposure of bees could depend on the surrounding landscapes in which they forage. In this study, we assess pesticide exposure across various land-use categories, while targeting the Japanese honey bee, Apis cerana japonica , a native subspecies of the eastern honey bee. In a project involving public participation, we measured the concentrations of major pesticides in honey and beeswax collected from 175 Japanese honey bee colonies across Japan and quantitatively analyzed the relationships between pesticide presence/absence or pesticide concentration and land-use categories around the colonies. Our findings revealed that the surrounding environment in which bees live strongly influences pesticide residues in beehive materials, whether the pesticides are systemic or not, with a clear trend for each land-use category. Agricultural lands, particularly paddy fields and orchards, and urban areas resulted in higher pesticide exposure, whereas forests presented a lower risk of exposure. To effectively control pesticide exposure levels in bees, it is essential to understand pesticide usage patterns and to develop appropriate regulatory systems in non-agricultural lands, similar to those in agricultural lands. Pesticides must be evaluated for their exposure to honey bees across diverse landscapes. This study reveals that both agricultural lands and urban areas resulted in higher pesticide exposure of bees, whereas forests were considered pesticide mitigation areas.
Removal of Pesticides from Lemon and Vegetables Using Electrolyzed Water Kitchen Devices
The possibility of using kitchen electrolyzed water devices (EWDs) for removing residual concentrations of pesticides (malathion, fenitrothion, and p,p′-DDT) from lemon, cucumber, and carrot surfaces was tested. Three commercial devices with different parameters were tested, and their effectiveness was compared with traditional washing methods using water. Based on the results, it was found that by using EWDs, the best removal of water-soluble pesticides was achieved with malathion and fenitrothion (reduction of up to 80%). The worst effectiveness was observed for lipophilic DDT, where a reduction of 20 to 40% was noted. Traditional methods proved to be more effective for removing DDT. Our studies have shown that EWDs can effectively remove pesticide residues; however, further studies should be conducted on a wider spectrum of pesticides and the process should be optimized.
Detection of pesticide residues and risk assessment from the local fruits and vegetables in Incheon, Korea
This study was conducted to investigate the pesticide residue concentrations and assess potential human health risks from fruit and vegetable consumption in Incheon. A total of 1,146 samples of 20 different types of fruits and vegetables were collected from the Incheon area in 2020. The pesticide residues were analyzed by the multi-residue method of the Korean Food Code for 400 different pesticides. Among the fruit and vegetable samples, 1,055 samples (92.1%) were free from detectable residues, while 91 samples (7.9%) contained residues and 11 samples (1.0%) had residues exceeding the Korean maximum residue limit. A total of 32 different pesticide residues were found and 8 residues exceeded MRLs. The most frequently detected pesticide residues were chlorfenapyr, procymidone, etofenprox, pendimethalin, fluopyram and azoxystrobin. The highest values of short term and long term exposure were obtained in the case of consumption of lettuce(leaves) with chlorfenpyr. For chronic dietary exposure, the cumulative hazard index (cHI) were below 100%. The results of this study showed that the detected pesticides were not exposed to potential health risks through the consumption of fruits and vegetables.
Development and validation of a GC × GC-ToFMS method for the quantification of pesticides in environmental waters
Water is a fundamental resource for living things, which is why its control is necessary. The widespread use of pesticides for agricultural and non-agricultural purposes has resulted in the presence of their residues in surface water and groundwater resources. Their presence in water is regulated through different directives, such as the Groundwater Directive, the Drinking Water Directive, and the Water Framework Directive, modified later several times, setting a maximum concentration of 0.1 µg.L −1 for individual pesticides and their degradation products, and 0.5 µg.L −1 for total pesticide residues present in a sample. There are different kinds of pesticides (e.g., organophosphorus and organochlorine pesticides, triazines, chloroacetamides, triazoles, (thio)carbamates) that have diverse chemical structures. Their determination and monitoring in a single analytical procedure are possible through multiresidue methods. In this study, 53 pesticides belonging to different chemical classes and their metabolites were selected based on their local occurrence and investigated in surface water and groundwater from agricultural areas susceptible to pesticide contamination. The methodology consisted of a classical solid-phase extraction (SPE) for the purification and enrichment of the pesticides, with a subsequent analysis in multidimensional gas chromatography coupled to mass spectrometry (GC×GC-MS). The quantification method was validated according to the Eurachem Guide in terms of linearity, precision, accuracy, limit of detection, and limit of quantification. After validation, the method was applied to 34 real-world water samples, and the results were compared with those obtained by a GC-QMS routine method.
Removal of 16 pesticide residues from strawberries by washing with tap and ozone water, ultrasonic cleaning and boiling
The effects of washing with tap and ozone water, ultrasonic cleaning and boiling on 16 pesticide (ten fungicides and six insecticides) residue levels in raw strawberries were investigated at different processing times (1, 2 and 5 min). An analysis of these pesticides was conducted using gas chromatography with nitrogen-phosphorous and electron capture detection (GC-NPD/ECD). The processing factor (PF) for each pesticide in each processing technique was determined. Washing with ozonated water was demonstrated to be more effective (reduction from 36.1 to 75.1 %) than washing with tap water (reduction from 19.8 to 68.1 %). Boiling decreased the residues of the most compounds, with reductions ranging from 42.8 to 92.9 %. Ultrasonic cleaning lowered residues for all analysed pesticides with removal of up to 91.2 %. The data indicated that ultrasonic cleaning and boiling were the most effective treatments for the reduction of 16 pesticide residues in raw strawberries, resulting in a lower health risk exposure. Calculated PFs for alpha-cypermethrin were used to perform an acute risk assessment of dietary exposure. To investigate the relationship between the levels of 16 pesticides in strawberry samples and their physicochemical properties, a principal component analysis (PCA) was performed.
Application of improved approach to evaluate a community intervention to reduce exposure of young children living in farmworker households to organophosphate pesticides
The take-home pathway is a significant source of organophosphate pesticide exposure for young children (3–5 years old) living with an adult farmworker. This avoidable exposure pathway is an important target for intervention. We selected 24 agricultural communities in the Yakima Valley of Washington State and randomly assigned them to receive an educational intervention (n = 12) to reduce children’s pesticide exposure or usual care (n = 12). We assessed exposure to pesticides in nearly 200 adults and children during the pre and post-intervention periods by measuring metabolites in urine. We compared pre- and post-intervention exposures by expressing the child’s pesticide metabolite concentration as a fraction of the adult’s concentration living in the same household, because the amount of pesticides applied during the collection periods varied. Exposures in our community were consistently higher, sometimes above the 95th percentile of the exposures reported by the National Health and Nutrition Examination Survey (NHANES). While intervention and control communities demonstrated a reduction in the ratio of child to adult exposure, this reduction was more pronounced in intervention communities (2.7-fold, p < 0.001 compared to 1.7-fold, p = 0.052 for intervention and control, respectively). By examining the child/adult biomarker ratio, we demonstrated that our community-based intervention was effective in reducing pesticide exposure to children in agricultural communities.