Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
17,925
result(s) for
"Pesticides - toxicity"
Sort by:
Toxicological interactions of pesticide mixtures: an update
by
Gil, Fernando
,
Lacasaña, Marina
,
Hernández, Antonio F.
in
Agrochemicals
,
Animals
,
Biomedical and Life Sciences
2017
Pesticides can interact with each other in various ways according to the compound itself and its chemical family, the dose and the targeted organs, leading to various effects. The term interaction means situations where some or all individual components of a mixture influence each other’s toxicity and the joint effects may deviate from the additive predictions. The various mixture effects can be greatly determined by toxicokinetic and toxicodynamic factors involving metabolic pathways and cellular or molecular targets of individual pesticides, respectively. However, the complexity of toxicological interactions can lead to unpredictable effects of pesticide mixtures. Interactions on metabolic processes affecting the biotransformation of pesticides seem to be by far the most common mechanism of synergism. Moreover, the identification of pesticides responsible for synergistic interactions is an important issue for cumulative risk assessment. Cholinesterase inhibiting insecticides (organophosphates and
N
-methylcarbamates), triazole fungicides, triazine herbicides, and pyrethroid insecticides are overrepresented in the synergistic mixtures identified so far. Since the limited available empirical evidence suggests that synergisms at dietary exposure levels are rather rare, and experimentally occurred at unrealistic high concentrations, synergism cannot be predicted quantitatively on the basis of the toxicity of mixture components. The prediction of biological responses elicited by interaction of pesticides with each other (or with other chemicals) will benefit from using a systems toxicology approach. The identification of core features of pesticide mixtures at molecular level, such as gene expression profiles, could be helpful to assess or predict the occurrence of interactive effects giving rise to unpredicted responses.
Journal Article
Quantifying Synergy: A Systematic Review of Mixture Toxicity Studies within Environmental Toxicology
2014
Cocktail effects and synergistic interactions of chemicals in mixtures are an area of great concern to both the public and regulatory authorities. The main concern is whether some chemicals can enhance the effect of other chemicals, so that they jointly exert a larger effect than predicted. This phenomenon is called synergy. Here we present a review of the scientific literature on three main groups of environmentally relevant chemical toxicants: pesticides, metal ions and antifouling compounds. The aim of the review is to determine 1) the frequency of synergy, 2) the extent of synergy, 3) whether any particular groups or classes of chemicals tend to induce synergy, and 4) which physiological mechanisms might be responsible for this synergy. Synergy is here defined as mixtures with minimum two-fold difference between observed and predicted effect concentrations using Concentration Addition (CA) as a reference model and including both lethal and sub-lethal endpoints. The results showed that synergy occurred in 7%, 3% and 26% of the 194, 21 and 136 binary pesticide, metal and antifoulants mixtures included in the data compilation on frequency. The difference between observed and predicted effect concentrations was rarely more than 10-fold. For pesticides, synergistic mixtures included cholinesterase inhibitors or azole fungicides in 95% of 69 described cases. Both groups of pesticides are known to interfere with metabolic degradation of other xenobiotics. For the four synergistic metal and 47 synergistic antifoulant mixtures the pattern in terms of chemical groups inducing synergy was less clear. Hypotheses in terms of mechanisms governing these interactions are discussed. It was concluded that true synergistic interactions between chemicals are rare and often occur at high concentrations. Addressing the cumulative rather than synergistic effect of co-occurring chemicals, using standard models as CA, is therefore regarded as the most important step in the risk assessment of chemical cocktails.
Journal Article
An assessment of acute insecticide toxicity loading (AITL) of chemical pesticides used on agricultural land in the United States
by
Radford, Rosemarie
,
Klein, Kendra
,
Kegley, Susan
in
Acute toxicity
,
Agricultural chemicals
,
Agricultural land
2019
We present a method for calculating the Acute Insecticide Toxicity Loading (AITL) on US agricultural lands and surrounding areas and an assessment of the changes in AITL from 1992 through 2014. The AITL method accounts for the total mass of insecticides used in the US, acute toxicity to insects using honey bee contact and oral LD50 as reference values for arthropod toxicity, and the environmental persistence of the pesticides. This screening analysis shows that the types of synthetic insecticides applied to agricultural lands have fundamentally shifted over the last two decades from predominantly organophosphorus and N-methyl carbamate pesticides to a mix dominated by neonicotinoids and pyrethroids. The neonicotinoids are generally applied to US agricultural land at lower application rates per acre; however, they are considerably more toxic to insects and generally persist longer in the environment. We found a 48- and 4-fold increase in AITL from 1992 to 2014 for oral and contact toxicity, respectively. Neonicotinoids are primarily responsible for this increase, representing between 61 to nearly 99 percent of the total toxicity loading in 2014. The crops most responsible for the increase in AITL are corn and soybeans, with particularly large increases in relative soybean contributions to AITL between 2010 and 2014. Oral exposures are of potentially greater concern because of the relatively higher toxicity (low LD50s) and greater likelihood of exposure from residues in pollen, nectar, guttation water, and other environmental media. Using AITL to assess oral toxicity by class of pesticide, the neonicotinoids accounted for nearly 92 percent of total AITL from 1992 to 2014. Chlorpyrifos, the fifth most widely used insecticide during this time contributed just 1.4 percent of total AITL based on oral LD50s. Although we use some simplifying assumptions, our screening analysis demonstrates an increase in pesticide toxicity loading over the past 26 years, which potentially threatens the health of honey bees and other pollinators and may contribute to declines in beneficial insect populations as well as insectivorous birds and other insect consumers.
Journal Article
A pesticide and iPSC dopaminergic neuron screen identifies and classifies Parkinson-relevant pesticides
2023
Parkinson’s disease (PD) is a complex neurodegenerative disease with etiology rooted in genetic vulnerability and environmental factors. Here we combine quantitative epidemiologic study of pesticide exposures and PD with toxicity screening in dopaminergic neurons derived from PD patient induced pluripotent stem cells (iPSCs) to identify Parkinson’s-relevant pesticides. Agricultural records enable investigation of 288 specific pesticides and PD risk in a comprehensive, pesticide-wide association study. We associate long-term exposure to 53 pesticides with PD and identify co-exposure profiles. We then employ a live-cell imaging screening paradigm exposing dopaminergic neurons to 39 PD-associated pesticides. We find that 10 pesticides are directly toxic to these neurons. Further, we analyze pesticides typically used in combinations in cotton farming, demonstrating that co-exposures result in greater toxicity than any single pesticide. We find trifluralin is a driver of toxicity to dopaminergic neurons and leads to mitochondrial dysfunction. Our paradigm may prove useful to mechanistically dissect pesticide exposures implicated in PD risk and guide agricultural policy.
Parkinson’s disease (PD) is linked to environmental factors. Through quantitative epidemiology, this study ties 53 pesticides to PD. An innovative human stem cell platform revealed that 10 of these were directly toxic to human dopamine neurons.
Journal Article
Knowledge, attitude and practices of farmers and experts about the effects of pesticide residues on agricultural product users and ecosystems: A case of Fogera District, Ethiopia
by
Atlabachew, Minaleshewa
,
Dejen, Eshete
,
Abaineh, Abebaw
in
Agricultural ecosystems
,
Agricultural industry
,
Agricultural practices
2023
Pesticides are chemicals used to control different types of pests. Though pesticides played a role in improving the quantity and quality of production, they have been threatening ecosystems and posed effects on humans in different parts of the world. Unfortunately, there were no studies made about the effects of pesticide residues on ecosystems and consumers in the Fogera District of Amhara Region, Ethiopia. Hence, the main objective of this study was to understand the knowledge, attitude, and practices of respondents about the effects of pesticide residues on ecosystems and consumers. A cross-sectional survey complemented by focus group discussions and field observations was used to gather the required data for the study. The close-ended data were analyzed using descriptive statistics, logistic regressions, and independent t-test, and data from open-ended questions were grouped and summarized based on their similarities. The findings of the study confirmed that there was significant knowledge, attitude, and practices difference between farmers and consumers about the effects of pesticide residues on ecosystems and humans. Farmers used highly toxic pesticides to control pests and improve the glossiness of vegetables and khat. Though they didn’t use the sprayed vegetables for their home consumption, some of the farmers deliberately supplied pesticide-sprayed vegetables without worrying about the negative effects of the pesticides on the consumers. There were also fishing practices from rivers after intoxicating the fish using the pesticide sprayed feed. This, in turn, might poison individuals who consume the fish. In general, pesticide application practices and consumption of pesticide-sprayed foodstuffs and surface water might pose serious health risks to ecosystems and humans. To minimize the negative effects of pesticides, rigorous awareness-raising on the effects and management of pesticides, enforcement of laws, delineation of the pesticide free buffer zone for waters, the establishment of a clear pesticide supply chain to the end users, ecosystem assessment and food safety monitoring schemes are highly required.
Journal Article
Improving consumer understanding of pesticide toxicity labels: experimental evidence
2024
Consumers often inadvertently misperceive the health hazards associated with over-the-counter pesticides under the current textual labeling policy, potentially leading to improper use. We conducted an incentivized framed field experiment with eye tracking to evaluate the effectiveness of the current pesticide labels that convey risk using signal words (Caution, Warning, Danger) compared to two visually focused label alternatives: traffic light colors and skull intensity symbols. A total of 166 participants were randomly assigned to one of three label formats and asked to rank toxicity levels and make purchasing decisions within multiple price lists. Results show that signal words fail to adequately communicate toxicity levels. Specifically, participants’ correct assessment of toxicity level dramatically improves from 54% under the existing signal word label to 95% under the traffic light and 83% under the skull intensity symbol labels. We also find that participants are more likely to choose the less toxic alternatives under the new labels, suggesting the current labeling system may affect choice and have unintended adverse effects on human health.
Journal Article
Mixture effects of thiamethoxam and seven pesticides with different modes of action on honey bees (Apis mellifera)
2023
Even though honey bees in the field are routinely exposed to a complex mixture of many different agrochemicals, few studies have surveyed toxic effects of pesticide mixtures on bees. To elucidate the interactive actions of pesticides on crop pollinators, we determined the individual and joint toxicities of thiamethoxam (THI) and other seven pesticides [dimethoate (DIM), methomyl (MET),
zeta
-cypermethrin (ZCY), cyfluthrin (CYF), permethrin (PER), esfenvalerate (ESF) and tetraconazole (TET)] to honey bees (
Apis mellifera
) with feeding toxicity test. Results from the 7-days toxicity test implied that THI elicited the highest toxicity with a LC
50
data of 0.25 (0.20–0.29) μg mL
−1
, followed by MET and DIM with LC
50
data of 4.19 (3.58–4.88) and 5.30 (4.65–6.03) μg mL
−1
, respectively. By comparison, pyrethroids and TET possessed relatively low toxicities with their LC
50
data from the range of 33.78 (29.12–38.39) to 1125 (922.4–1,442) μg mL
−1
. Among 98 evaluated THI-containing binary to octonary mixtures, 29.59% of combinations exhibited synergistic effects. In contrast, 18.37% of combinations exhibited antagonistic effects on
A. mellifera
. Moreover, 54.8% pesticide combinations incorporating THI and TET displayed synergistic toxicities to the insects. Our findings emphasized that the coexistence of several pesticides might induce enhanced toxicity to honey bees. Overall, our results afforded worthful toxicological information on the combined actions of neonicotinoids and current-use pesticides on honey bees, which could accelerate farther comprehend on the possible detriments of other pesticide mixtures in agro-environment.
Journal Article
Investigate the binding of pesticides with the TLR4 receptor protein found in mammals and zebrafish using molecular docking and molecular dynamics simulations
2024
The widespread use of pesticides poses significant threats to both environmental and human health, primarily due to their potential toxic effects. The study investigated the cardiovascular toxicity of selected pesticides, focusing on their interactions with Toll-like receptor 4 (TLR4), an important part of the innate immune system. Using computational tools such as molecular docking, molecular dynamics (MD) simulations, principal component analysis (PCA), density functional theory (DFT) calculations, and ADME analysis, this study identified C160 as having the lowest binding affinity (-8.2 kcal/mol), followed by C107 and C165 (-8.0 kcal/mol). RMSD, RMSF, Rg, and hydrogen bond metrics indicated the formation of stable complexes between specific pesticides and TLR4. PCA revealed significant structural changes upon ligand binding, affecting stability and flexibility, while DFT calculations provided information about the stability, reactivity, and polarity of the compounds. ADME studies highlighted the solubility, permeability, and metabolic stability of C107, C160, and C165, suggesting their potential for bioavailability and impact on cardiovascular toxicity. C107 and C165 exhibit higher bioactivity scores, indicating favourable absorption, metabolism, and distribution properties. C165 also violated rule where molecular weight is greater than 500 g/mol. Further, DFT and NCI analysis of post MD conformations confirmed the binding of ligands at the binding pocket. The analysis shed light on the molecular mechanisms of pesticide-induced cardiovascular toxicity, aiding in the development of strategies to mitigate their harmful effects on human health.
Journal Article
Fungal degradation of selected medium to highly polar pesticides by Trametes versicolor: kinetics, biodegradation pathways, and ecotoxicity of treated waters
by
López-García Ester
,
Sarrà Montserrat
,
Hu Kaidi
in
Biodegradation
,
Bioreactors
,
Cytochrome P450
2022
The massive use of pesticides represents one of the main causes of environmental deterioration, as they have adverse effects on non-target organisms. Thus, the development of technologies capable of reducing their release into the environment is urgently needed. This study reports for the first time the white-rot fungus Trametes versicolor as an alternative towards the degradation of medium to highly polar pesticides such as the organophosphate malathion, and the neonicotinoids acetamiprid and imidacloprid. Specifically, T. versicolor could completely remove 1 mg/L of malathion in an Erlenmeyer flask within 48 h, while experiments of acetamiprid and imidacloprid (4 mg/L), conducted in air-pulse fluidized bioreactors, resulted in degradation percentages of 20% and 64.7%, respectively, after 7 days of operation. Enzymatic exploration studies revealed that the cytochrome P450 system, instead of the extracellular enzyme laccase, is involved in the degradation of acetamiprid and imidacloprid. The degradation pathways were proposed based on the main transformation products (TPs) formed in the solutions: seven in the case of malathion, and two and one in the case of imidacloprid and acetamiprid, respectively. Although the TPs identified were predicted to be less toxic than the investigated pesticides, the toxicity of the individual solutions slightly increased throughout the degradation process, according to the Microtox assay. However, the solution toxicity was always below the threshold established in the local regulation. Although additional research is needed to implement this treatment at a pilot plant scale, this work highlights the potential of T. versicolor to bio-remediate pesticide-contaminated waters.
Journal Article
A retrospective analysis of honey bee (Apis mellifera) pesticide toxicity data
by
Kyle, Lee
,
Stebbins, Katherine
,
Thompson, Pamela G.
in
Acute toxicity
,
Adults
,
Agricultural production
2022
Current USEPA ecological risk assessments for pesticide registration include a determination of potential risks to bees. Toxicity data are submitted to support these assessments and the USEPA maintains a large database containing acute and chronic toxicity data on adult and larval honey bees ( Apis mellifera ), which USEPA considers a surrogate for Apis and non- Apis bees. We compared these toxicity data to explore possible trends. This analysis indicated a significant correlation between acute contact and oral median lethal dose (LD 50 ) values for adult honey bees (ρ = 0.74, p <0.0001). Using default EPA modeling assumptions, where exposure for an individual bee is roughly 12x lower through contact than through ingestion, the analysis indicates that the oral LD 50 is similarly if not more protective of the contact LD 50 for the majority of pesticides and modes of action evaluated. The analysis also provided evidence that compounds with a lower acute toxicity for adults through contact and oral exposure pathways may still be acutely toxic for larvae. The acute toxicity of herbicides and fungicides was higher for larvae relative to oral and contact toxicity for adult honey bees for the same compounds and the no observed adverse effect level (NOAEL) from chronic toxicity studies were lower for larvae relative to adults, indicating increased sensitivity of larvae. When comparing 8-day LD 50 values between single dose larval acute studies to those derived from repeat dose 22-day larval chronic toxicity studies, the LD 50 values derived from chronic studies were significantly lower than those from acute toxicity tests (Z = -37, p = 0.03).
Journal Article