Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
19,600
result(s) for
"Pheromone"
Sort by:
The novel function of an orphan pheromone receptor reveals the sensory specializations of two potential distinct types of sex pheromones in noctuid moth
2024
Sex pheromones play crucial role in mating behavior of moths, involving intricate recognition mechanisms. While insect chemical biology has extensively studied type I pheromones, type II pheromones remain largely unexplored. This study focused on
Helicoverpa armigera
, a representative species of noctuid moth, aiming to reassess its sex pheromone composition. Our research unveiled two previously unidentified candidate type II sex pheromones—3Z,6Z,9Z-21:H and 3Z,6Z,9Z-23:H—in
H. armigera
. Furthermore, we identified HarmOR11 as an orphan pheromone receptor of 3Z,6Z,9Z-21:H. Through AlphaFold2 structural prediction, molecular docking, and molecular dynamics simulations, we elucidated the structural basis and key residues governing the sensory nuances of both type I and type II pheromone receptors, particularly HarmOR11 and HarmOR13. This study not only reveals the presence and recognition of candidate type II pheromones in a noctuid moth, but also establishes a comprehensive structural framework for PRs, contributing to the understanding of connections between evolutionary adaptations and the emergence of new pheromone types.
Journal Article
Evolutionary shifts in pheromone receptors contribute to speciation in four Helicoverpa species
2023
Male moths utilize their pheromone communication systems to distinguish potential mates from other sympatric species, which contributes to maintaining reproductive isolation and even drives speciation. The molecular mechanisms underlying the evolution of pheromone communication systems are usually studied between closely-related moth species for their similar but divergent traits associated with pheromone production, detection, and/or processing. In this study, we first identified the functional differentiation in two orthologous pheromone receptors, OR14b, and OR16, in four Helicoverpa species, Helicoverpa armigera, H. assulta, H. zea, and H. gelotopoeon. To understand the substrate response specificity of these two PRs, we performed all-atom molecular dynamics simulations of OR14b and OR16 based on AlphaFold2 structural prediction, and molecular docking, allowing us to predict a few key amino acids involved in substrate binding. These candidate residues were further tested and validated by site-directed mutagenesis and functional analysis. These results together identified two hydrophobic amino acids at positions 164 and 232 are the determinants of the response specificity of HarmOR14b and HzeaOR14b to Z9-14:Ald and Z9-16:Ald by directly interacting with the substrates. Interestingly, in OR16 orthologs, we found that position 66 alone determines the specific binding of Z11-16:OH, likely via allosteric interactions. Overall, we have developed an effective integrated method to identify the critical residues for substrate selectivity of ORs and elucidated the molecular mechanism of the diversification of pheromone recognition systems.
Journal Article
Sexual rejection via a vomeronasal receptor-triggered limbic circuit
2018
Mating drive is balanced by a need to safeguard resources for offspring, yet the neural basis for negative regulation of mating remains poorly understood. In rodents, pheromones critically regulate sexual behavior. Here, we observe suppression of adult female sexual behavior in mice by exocrine gland-secreting peptide 22 (ESP22), a lacrimal protein from juvenile mice. ESP22 activates a dedicated vomeronasal receptor, V2Rp4, and V2Rp4 knockout eliminates ESP22 effects on sexual behavior. Genetic tracing of ESP22-responsive neural circuits reveals a critical limbic system connection that inhibits reproductive behavior. Furthermore, V2Rp4 counteracts a highly related vomeronasal receptor, V2Rp5, that detects the male sex pheromone ESP1. Interestingly, V2Rp4 and V2Rp5 are encoded by adjacent genes, yet couple to distinct circuits and mediate opposing effects on female sexual behavior. Collectively, our study reveals molecular and neural mechanisms underlying pheromone-mediated sexual rejection, and more generally, how inputs are routed through olfactory circuits to evoke specific behaviors.
Sex pheromones that increase mating have been reported across a number of different species, yet there is little known about pheromones that suppress female mating drive. This study reports that juvenile female mice release a pheromone, ESP22, which suppresses sexual receptivity of adult female mice by evoking a robust rejection behavior upon male mounting.
Journal Article
Control of Dermanyssus gallinae (De Geer 1778) and other mites with volatile organic compounds, a review
by
Lempereur, Laetitia
,
Caparros Megido, Rudy
,
Gay, Marie
in
Acaricides
,
Acids
,
Aggregation pheromone
2020
Dermanyssus gallinae (De Geer 1778), commonly named the poultry red mite (PRM), is considered to be the most harmful ectoparasite in poultry farms in Europe. This species feeds on the blood of laying hens, but spends most of its time hidden in cracks and crevices around hen nests. To control PRM populations in poultry houses, chemical pesticides are currently used; however, concern is growing regarding the harmful residues found in eggs and hens, along with the increased resistance of mites against several compounds. Alternatives to synthetic compounds are now being explored, including vaccines, biological control, physical control and semiochemical control based on the chemical ecology of PRM. This review focused on the different volatile organic compounds (VOCs) identified from D. gallinae and other mite species that have been discovered to control them. Pheromones (aggregation pheromone, sex pheromone and alarm pheromone) and kairomones promoting attraction behaviour in D. gallinae and other mite species are presented, while VOCs from essential oils and plant extracts with repellent properties are also explored. Finally, devices using VOCs on PRM in the field are described, with devices that have been tested on other Acari species being mentioned as potential directions for the future control of PRM.
Journal Article
Identification of the trail-following pheromone receptor in termites
by
Šulc, Josef
,
Sillam-Dussès, David
,
Lukšan, Ondřej
in
Animals
,
Arthropod Antennae - metabolism
,
Chemical communication
2025
Pheromone communication is the cornerstone of eusocial insect societies since it mediates the social hierarchy, division of labor, and concerted activities of colony members. The current knowledge on molecular mechanisms of social insect pheromone detection by odorant receptors (ORs) is limited to bees and ants, while no OR was yet functionally characterized in termites, the oldest eusocial insect clade. Here, we present the first OR deorphanization in termites. We selected four OR sequences from the annotated antennal transcriptome of the termite Prorhinotermes simplex (Psammotermitidae), expressed them in Empty Neuron Drosophila , and functionally characterized them using single sensillum recording (SSR). For one of the selected ORs, PsimOR14, we obtained strong responses to the main component of P. simplex trail-following pheromone, the monocyclic diterpene neocembrene. PsimOR14 showed a narrow tuning to neocembrene with only one additional compound out of 67 tested generating non-negligible responses. We report on homology-based modeling and molecular dynamics simulations of ligand binding by PsimOR14. Subsequently, we used SSR in P. simplex workers and identified the olfactory sensillum responding to neocembrene, thus likely expressing PsimOR14 . Finally, we demonstrate that PsimOR14 is significantly more expressed in worker antennae compared to soldiers, which correlates with higher sensitivity of workers to neocembrene.
Journal Article
A novel lineage of candidate pheromone receptors for sex communication in moths
by
Caballero-Vidal, Gabriela
,
François, Marie-Christine
,
Chertemps, Thomas
in
Agricultural pests
,
Analysis
,
Animal biology
2019
Sex pheromone receptors (PRs) are key players in chemical communication between mating partners in insects. In the highly diversified insect order Lepidoptera, male PRs tuned to female-emitted type I pheromones (which make up the vast majority of pheromones identified) form a dedicated subfamily of odorant receptors (ORs). Here, using a combination of heterologous expression and in vivo genome editing methods, we bring functional evidence that at least one moth PR does not belong to this subfamily but to a distantly related OR lineage. This PR, identified in the cotton leafworm Spodoptera littoralis, is highly expressed in male antennae and is specifically tuned to the major sex pheromone component emitted by females. Together with a comprehensive phylogenetic analysis of moth ORs, our functional data suggest two independent apparitions of PRs tuned to type I pheromones in Lepidoptera, opening up a new path for studying the evolution of moth pheromone communication.
Many animals make use of chemical signals to communicate with other members of their species. Such chemical signals, called pheromones, often allow males and females of the same species to recognize each other before mating. Since the discovery of the very first pheromone in the silkworm moth Bombyx mori at the end of the 1950s, moths have been a model for pheromone research. The sex pheromone communication system in these insects has thus been well described: females emit a mixture of volatile chemicals, which can be detected by the antennae of males up to several hundred meters away. This detection is achieved through neurons with specialized proteins known as pheromone receptors that bind to the chemical signals produced by the females.
Recognizing mates by detecting a very specific pheromone signature prevents moths from interbreeding with other species. The evolution of pheromone signals and their corresponding receptors can therefore lead to the rise of new reproductive barriers between populations, and eventually to the emergence of new species. The rate at which sex pheromones have diversified is likely one reason for the existence of over 160,000 species of moths. But how did moths’ sex pheromone receptors evolve in the first place?
Previous studies suggested that moth pheromone receptors had appeared just once during evolution. Specifically, they revealed that these receptors belong to the same branch or lineage in the ‘family tree’ of all receptors that detect chemical compounds in moths. This meant that when researchers looked for pheromone receptors in a new species of moth, they always focused on this lineage. But Bastin-Héline et al. have now found that one pheromone receptor from a pest moth called Spodoptera littoralis does not belong to this established group.
First, Bastin-Héline et al. inserted this receptor into animal cells grown in the laboratory to confirm that it responds to a specific pheromone produced by S. littoralis. Next, they genetically modified moths of this species and showed that males need this receptor in order to mate. An evolutionary analysis showed that the receptor belongs to a different lineage than all the other known pheromone receptors. Together these results indicate the receptors for sex pheromones must have evolved multiple times independently in moths.
These results will open new avenues for deciphering pheromone communication in moths, and lead to further research into this newly discovered lineage of candidate pheromone receptors. Such studies may foster the development of new strategies to control agricultural pests, given that some species of moths can have devastating effects on the yields of certain crops.
Journal Article