Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
6,525
result(s) for
"Phosphatase activities"
Sort by:
Soil pH and Nutrient Stoichiometry as Key Drivers of Phosphorus Availability in Crop Rotation Systems
by
Wang, Tingting
,
Li, Chengliang
,
Song, Yan
in
Acid phosphatase
,
acid phosphatase activity
,
Agricultural practices
2025
Crop rotation systems profoundly influence soil phosphorus (P) dynamics through physicochemical and microbial interactions. The mechanisms regulating P availability under various rotational practices remain poorly understood. This five-year field experiment investigated the effects of four rotation systems (WM: wheat–maize; WP: wheat–peanut; WS: wheat–soybean; MV: maize–hairy vetch) on soil P fractions, phosphatase activities, P-cycling gene abundance, and their interactions with soil properties. The WM rotation substantially reduced soil pH (6.29) while increasing labile P fractions (Ca2-P) and moderately labile P (Al-P, Fe-P, and Ca8-P), which was attributed to enhanced acid phosphatase activity. The WP rotation elevated soil pH (8.13) but reduced P availability due to calcium–P immobilization. The MV rotation stimulated microbial P cycling, exhibiting the highest phoD (2.01 × 106 copies g−1) and phnK (33,140 copies g−1) gene abundance, which was linked to green manure-induced microbial activation. Redundancy analysis identified soil pH, total nitrogen, and stoichiometric ratios (C/N and N/P) as key shared drivers of P fractions and enzymatic activity. Partial least squares path modeling (PLS–PM) indicated that crop rotation directly regulated P availability through pH modulation (r = −0.559 ***) and the C/N ratio (r = 0.343 ***) while indirectly regulating P fractions through phosphatase activity. Lower C/N ratios (<10) across all rotation regimes amplified the carbon limitation in the process of P transformation, indicating that exogenous carbon inputs and appropriate stoichiometry in the soil should be optimized. The results of this study inform the selection of suitable crop rotation patterns for sustainable agriculture.
Journal Article
Effects of Rice Husk Biochar and Compost Amendments on Soil Phosphorus Fractions, Enzyme Activities and Rice Yields in Salt-Affected Acid Soils in the Mekong Delta, Viet Nam
2023
Given that rice husk biochar has been shown to modulate salinity in salt-affected acid soils, the objective of this study was to investigate the effects of organic amendment of salinized acid soils on P fractions, enzyme activities, and associated rice yield. Four treatments, viz. Rice–Rice–Rice, [RRR]; Fallow–Rice–Rice, [FRR]; Fallow–Rice–Rice + 3 Mg ha−1 of compost [FRR + Comp]; and Fallow–Rice–Rice + 10 Mg ha−1 of biochar [FRR + BC] were established at Ben Tre and Kien Giang sites, Viet Nam, over six consecutive crops. Soil properties at harvest of the sixth crop showed that there were diverse patterns of fractionation between P forms with respect to treatment. Overarchingly, biochar increased labile and moderately labile inorganic P and organic P by 30% to 70%, respectively, whilst compost had a relatively modest effect on these pools. Soil phosphatase activities at crop tillering increased following the FRR + Comp and FRR + BC treatments compared with those in RRR, except for acid phosphatase at Ben Tre. At harvest, there were no significant differences between the enzyme activities among the treatments. Rice yield was positively correlated with the more labile forms of P, soil C, and acid phosphatase activity. In the absence of organic amendments, there was no effect of triple versus double rice crops being grown in one-year cycle. Repeated application of biochar (10 Mg ha−1 × 5 times) showed potential to increase grain yields and total soil C in salt-affected acid soils, via modulation of P transformations to more plant-available forms.
Journal Article
Characterization of purple acid phosphatases involved in extracellular dNTP utilization in Stylosanthes
by
Xue, Ying-Bin
,
Liu, Pan-Dao
,
Chen, Zhi-Jian
in
Acid Phosphatase - genetics
,
Acid Phosphatase - metabolism
,
Acid Phosphatase - physiology
2016
Stylo (Stylosanthes spp.) is a pasture legume predominant in tropical and subtropical areas, where low phosphorus (P) availability is a major constraint for plant growth. Therefore, stylo might exhibit superior utilization of the P pool on acid soils, particularly organic P. However, little is known about mechanisms of inorganic phosphate (Pi) acquisition employed by stylo. In this study, the utilization of extracellular deoxy-ribonucleotide triphosphate (dNTP) and the underlying physiological and molecular mechanisms were examined for two stylo genotypes with contrasting P efficiency. Results showed that the P-efficient genotype, TPRC2001-1, was superior to the P-inefficient genotype, Fine-stem, when using dNTP as the sole P source. This was reflected by a higher dry weight and total P content for TPRC2001-1 than for Fine-stem, which was correlated with higher root-associated acid phosphatase (APase) activities in TPRC2001-1 under low P conditions. Subsequently, three PAP members were cloned from TPRC2001-1: SgPAP7, SgPAP10, and SgPAP26. Expression levels of these three SgPAPs were up-regulated by Pi starvation in stylo roots. Furthermore, there was a higher abundance of transcripts of SgPAP7 and SgPAP10 in TPRC2001-1 than in Finestem. Subcellular localization analysis demonstrated that these three SgPAPs were localized on the plasma membrane. Overexpression of these three SgPAPs could result in significantly increased root-associated APase activities, and thus extracellular dNTP utilization in bean hairy roots. Taken together, the results herein suggest that SgPAP7, SgPAP10, and SgPAP26 may differentially contribute to root-associated APase activities, and thus control extracellular dNTP utilization in stylo.
Journal Article
Responses of terrestrial ecosystem phosphorus cycling to nitrogen addition: A meta-analysis
2017
Aim: Anthropogenic additions of nitrogen (N) are expected to drive terrestrial ecosystems toward greater phosphorus (P) limitation. However, a comprehensive understanding of how an ecosystem's P cycle responds to external N inputs remains elusive, making model predictions of the anthropogenic P limitation and its impacts largely uncertain. Location: Global. Time period: 1986-2015. Major taxa studied: Terrestrial ecosystems. Methods: We conducted a meta-analysis including 288 independent study sites from 192 articles to evaluate global patterns and controls of 10 variables associated with ecosystem P cycling under N addition. Results: Overall, N addition increased biomass in plants (+34%) and litter (+15%) as well as plant P content (+17%), while decreasing P concentrations in plants and litter (-8% and -11%, respectively). N addition did not change soil labile P or microbial P, but enhanced phosphatase activity (+24%). The effects of N addition on the litter P pool and soil total P remained unclear due to significant publication biases. The response of P cycling to N addition in tropical forests was different from that in other ecosystem types. N addition did not change plant biomass or phosphatase activity in tropical forests but significantly reduced plant P and soil labile P concentrations. The shift in plant P concentration under N addition was negatively correlated with the N application rate or total N load. N-induced change in soil labile P was strongly regulated by soil pH value at the control sites, with a significant decrease of 14% only in acidic soils (pH < 5.5). Main conclusions: Our results suggest that as anthropogenic N enhancement continues in the future it could induce P limitation in terrestrial ecosystems while accelerating P cycling, particularly in tropical forests. A quantitative framework generated on the basis of this meta-analysis is useful for our understanding of ecosystem P cycling with N addition, and for incorporating the anthropogenic P limitation into ecosystem models used to analyse effects of future climate change.
Journal Article
Carbon and phosphorus exchange may enable cooperation between an arbuscular mycorrhizal fungus and a phosphate-solubilizing bacterium
by
Minggang Xu
,
Yu Liu
,
Lin Zhang
in
Acid Phosphatase - metabolism
,
arbuscular mycorrhizal fungus (AMF)–phosphate‐solubilizing bacterium (PSB) interactions
,
Bacteria
2016
Arbuscular mycorrhizal fungi (AMF) transfer plant photosynthate underground which can stimulate soil microbial growth. In this study, we examined whether there was a potential link between carbon (C) release from an AMF and phosphorus (P) availability via a phosphatesolubilizing bacterium (PSB).
We investigated the outcome of the interaction between the AMF and the PSB by conducting a microcosm and two Petri plate experiments. An in vitro culture experiment was also conducted to determine the direct impact of AMF hyphal exudates on growth of the PSB.
The AMF released substantial C to the environment, triggering PSB growth and activity. In return, the PSB enhanced mineralization of organic P, increasing P availability for the AMF. When soil available P was low, the PSB competed with the AMF for P, and its activity was not stimulated by the fungus. When additional P was added to increase soil available P, the PSB enhanced AMF hyphal growth, and PSB activity was also stimulated by the fungus.
Our results suggest that an AMF and a free-living PSB interacted to the benefit of each other by providing the C or P that the other microorganism required, but these interactions depended upon background P availability.
Journal Article
Multiple phosphorus acquisition strategies adopted by fine roots in low-fertility soils in Central Amazonia
by
Cordeiro, Amanda L.
,
Schaap, Karst J.
,
Aragão, Luiz E. O. C.
in
Absorptivity
,
Adaptation
,
Amazonia
2020
Background and aims
Ancient Amazon soils are characterised by low concentrations of soil phosphorus (P). Therefore, it is hypothesised that plants may invest a substantial proportion of their resources belowground to adjust their P-uptake strategies, including root morphological, physiological (phosphatase enzyme activities) and biotic (arbuscular mycorrhizal (AM) associations) adaptations. Since these strategies are energy demanding, we hypothesise that trade-offs between morphological traits and root phosphatase exudation and symbiotic associations would occur. Specifically, we expected that plants which invest in finer roots, and therefore have greater ability to explore large soil volumes, would have a high investment in physiological adaptations such as enhanced phosphatase production. In contrast, we expected that plants with predominantly thicker roots would invest more in symbiotic associations, in which carbon is traded for P acquired from AM fungal communities.
Methods
We collected absorptive roots (<2 mm diameter) from a lowland Central Amazon forest near Manaus, Brazil. We measured fine root diameter, specific root length (SRL), specific root area (SRA), root tissue density (RTD), root phosphatase activity (APase) and arbuscular mycorrhizal (AM) fungi colonisation.
Results
Root morphological traits were related to APase activity, with higher APase activity in roots with higher SRL and SRA but lower RTD. However, the degree of AM colonisation was not related to any measured root morphological trait.
Conclusions
Fine absorptive roots likely benefit from having low RTD, high SRL, SRA and APase exudation to acquire P efficiently. However, because AM colonisation was not related to root morphology, we suggest that investment in multiple P-uptake strategies is required for maintaining productivity in Central Amazon forests.
Journal Article
Litter inputs and phosphatase activity affect the temporal variability of organic phosphorus in a tropical forest soil in the Central Amazon
by
Hofhansl, Florian
,
Martins, Nathielly Pires
,
Schaap, Karst J.
in
Agriculture
,
Amazonia
,
Analysis
2021
Purpose
The tropical phosphorus cycle and its relation to soil phosphorus (P) availability are a major uncertainty in projections of forest productivity. In highly weathered soils with low P concentrations, plant and microbial communities depend on abiotic and biotic processes to acquire P. We explored the seasonality and relative importance of drivers controlling the fluctuation of common P pools via processes such as litter production and decomposition, and soil phosphatase activity.
Methods
We analyzed intra-annual variation of tropical soil phosphorus pools using a modified Hedley sequential fractionation scheme. In addition, we measured litterfall, the mobilization of P from litter and soil extracellular phosphatase enzyme activity and tested their relation to fluctuations in P- fractions.
Results
Our results showed clear patterns of seasonal variability of soil P fractions during the year. We found that modeled P released during litter decomposition was positively related to change in organic P fractions, while net change in organic P fractions was negatively related to phosphatase activities in the top 5 cm.
Conclusion
We conclude that input of P by litter decomposition and potential soil extracellular phosphatase activity are the two main factors related to seasonal soil P fluctuations, and therefore the P economy in P impoverished soils. Organic soil P followed a clear seasonal pattern, indicating tight cycling of the nutrient, while reinforcing the importance of studying soil P as an integrated dynamic system in a tropical forest context.
Journal Article
A Phosphatase‐Mimetic Nano‐Stabilizer of Mast Cells for Long‐Term Prevention of Allergic Disease
by
Zhou, Yan
,
Zhang, Cheng
,
Guan, Yunan
in
Allergens
,
Allergens - immunology
,
allergic disease prevention
2021
Allergic diseases are pathological immune responses with significant morbidity, which are closely associated with allergic mediators as released by allergen‐stimulated mast cells (MCs). Prophylactic stabilization of MCs is regarded as a practical approach to prevent allergic diseases. However, most of the existing small molecular MC stabilizers exhibit a narrow therapeutic time window, failing to provide long‐term prevention of allergic diseases. Herein, ceria nanoparticle (CeNP‐) based phosphatase‐mimetic nano‐stabilizers (PMNSs) with a long‐term therapeutic time window are developed for allergic disease prevention. By virtue of the regenerable catalytic hotspots of oxygen vacancies on the surface of CeNPs, PMNSs exhibit sustainable phosphatase‐mimetic activity to dephosphorylate phosphoproteins in allergen‐stimulated MCs. Consequently, PMNSs constantly modulate intracellular phospho‐signaling cascades of MCs to inhibit the degranulation of allergic mediators, which prevents the initiation of allergic mediator‐associated pathological responses, eventually providing protection against allergic diseases with a long‐term therapeutic time window.
Ceria nanoparticle (CeNP‐) based phosphatase‐mimetic nano‐stabilizers (PMNSs) of mast cells (MCs) are developed for allergic disease prevention. By virtue of the regenerable catalytic hotspots of oxygen vacancies on the surface of CeNPs, PMNSs can constantly modulate degranulation‐associated phospho‐signaling cascades in allergen‐stimulated MCs via the dephosphorylation of phosphoproteins, enabling the long‐term therapeutic time window for allergic disease prevention.
Journal Article
Determination of the activity of alkaline phosphatase by using nanoclusters composed of flower-like cobalt oxyhydroxide and copper nanoclusters as fluorescent probes
by
Gan, Tian
,
Zhang, Zi-Ping
,
Li, Yang
in
Alkaline phosphatase
,
Alkaline Phosphatase - analysis
,
Alkaline Phosphatase - blood
2018
The authors describe a sensitive fluorometric method for the determination of the activity of alkaline phosphatase (ALP). It is based on the use of a composite prepared consisting of flower-like cobalt oxyhydroxide (CoOOH) and copper nanoclusters (CuNCs). On formation of the CuNC-CoOOH aggregates, the fluorescence of the CuNCs is quenched by the CoOOH sheets. If, however, the CoOOH sheets are reduced to Co(II) ions in the presence of ascorbic acid (AA), fluorescence recovers. AA is formed in-situ by hydrolysis of the substrate ascorbic acid 2-phosphate (AA2P) as catalyzed by ALP. Thus, the ALP activity can be detected indirectly by kinetic monitoring of the increase in fluorescence, best at excitation/emission wavelengths of 335/410 nm. The assay allows ALP to be determined in 0.5 to 150 mU·mL
−1
activity range and with a 0.1 mU·mL
−1
detection limit. The method was successfully applied to the determination of ALP activity in (spiked) human serum samples. The assay has attractive features in being of the off-on type and immune against false positive results.
Graphical Abstract
A fluorescent bioassay is reported for the determination of the activity of alkaline phosphatase (ALP). It is exploiting the ascorbic acid (AA)-induced decomposition of nanoclusters composed of flower-like cobalt oxyhydroxide and copper nanoclusters. ALP catalyzes hydrolysis of ascorbic acid 2-phosphate (AA2P) and dephosphorylation to form AA.
Journal Article
Interactions of nitrogen and phosphorus cycling promote P acquisition and explain synergistic plant-growth responses
by
Widdig, Meike
,
Spohn, Marie
,
Schleuss, Per Marten
in
Arbuscular mycorrhizas
,
Availability
,
ecological stoichiometry
2020
Plant growth is often co-limited by nitrogen (N) and phosphorus (P). Plants might use one element to acquire another (i.e., trading N for P and P for N), which potentially explains synergistic growth responses to NP addition. We studied a 66-yr-old grassland experiment in South Africa that consists of four levels of N addition with and without P addition. We investigated the response of aboveground net primary production (ANPP) to N and P addition over the last 66 yr. Further, we tested whether phosphatase activity and plant P uptake depend on N availability, and vice versa, whether non-symbiotic N2 fixation and plant N uptake depend on P availability. We expected that the interaction of both elements promote processes of nutrient acquisition and contribute to synergistic plant growth effects in response to NP addition. We found synergistic N and P co-limitation of ANPP for the period from 1951 to 2017 but the response to N and P addition diminished over time. In 2017, aboveground P stocks, relative rRNA operon abundance of arbuscular mycorrhizal fungi, and soil organic P storage increased with N fertilization rate when N was added with P compared to the treatment in which only N was added. Further, N addition increased phosphatase activity, which indicates that plants used N to acquire P from organic sources. In contrast, aboveground N stocks and non-symbiotic N2 fixation did not change significantly due to P addition. Taken together, our results indicate that trading N for P likely contributes to synergistic plant-growth response. Plants used added N to mobilize and take up P from organic sources, inducing stronger recycling of P and making the plant community less sensitive to external nutrient inputs. The latter could explain why indications of synergistic co-limitation diminished over time, which is usually overlooked in short-term nutrient addition experiments.
Journal Article