Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
13,913 result(s) for "Phosphoproteins"
Sort by:
An atlas of substrate specificities for the human serine/threonine kinome
Protein phosphorylation is one of the most widespread post-translational modifications in biology 1 , 2 . With advances in mass-spectrometry-based phosphoproteomics, 90,000 sites of serine and threonine phosphorylation have so far been identified, and several thousand have been associated with human diseases and biological processes 3 , 4 . For the vast majority of phosphorylation events, it is not yet known which of the more than 300 protein serine/threonine (Ser/Thr) kinases encoded in the human genome are responsible 3 . Here we used synthetic peptide libraries to profile the substrate sequence specificity of 303 Ser/Thr kinases, comprising more than 84% of those predicted to be active in humans. Viewed in its entirety, the substrate specificity of the kinome was substantially more diverse than expected and was driven extensively by negative selectivity. We used our kinome-wide dataset to computationally annotate and identify the kinases capable of phosphorylating every reported phosphorylation site in the human Ser/Thr phosphoproteome. For the small minority of phosphosites for which the putative protein kinases involved have been previously reported, our predictions were in excellent agreement. When this approach was applied to examine the signalling response of tissues and cell lines to hormones, growth factors, targeted inhibitors and environmental or genetic perturbations, it revealed unexpected insights into pathway complexity and compensation. Overall, these studies reveal the intrinsic substrate specificity of the human Ser/Thr kinome, illuminate cellular signalling responses and provide a resource to link phosphorylation events to biological pathways. Analysis of the kinase activity of 300 protein Ser/Thr kinases reveals that the substrate specificity of the kinome is substantially more diverse than expected and is driven extensively by negative selectivity
Recognition and inhibition of SARS-CoV-2 by humoral innate immunity pattern recognition molecules
The humoral arm of innate immunity includes diverse molecules with antibody-like functions, some of which serve as disease severity biomarkers in coronavirus disease 2019 (COVID-19). The present study was designed to conduct a systematic investigation of the interaction of human humoral fluid-phase pattern recognition molecules (PRMs) with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Of 12 PRMs tested, the long pentraxin 3 (PTX3) and mannose-binding lectin (MBL) bound the viral nucleocapsid and spike proteins, respectively. MBL bound trimeric spike protein, including that of variants of concern (VoC), in a glycan-dependent manner and inhibited SARS-CoV-2 in three in vitro models. Moreover, after binding to spike protein, MBL activated the lectin pathway of complement activation. Based on retention of glycosylation sites and modeling, MBL was predicted to recognize the Omicron VoC. Genetic polymorphisms at the MBL2 locus were associated with disease severity. These results suggest that selected humoral fluid-phase PRMs can play an important role in resistance to, and pathogenesis of, COVID-19, a finding with translational implications.Stravalaci et al. examined recognition of SARS-CoV-2 by human soluble innate pattern recognition receptor. They report that pentraxin 3 and mannose-binding protein recognize viral nucleoprotein and spike, respectively. Mannose-binding lectin has antiviral activity, and human genetic polymorphisms of MBL2 are associated with more severe COVID-19.
Mass-spectrometry-based draft of the Arabidopsis proteome
Plants are essential for life and are extremely diverse organisms with unique molecular capabilities 1 . Here we present a quantitative atlas of the transcriptomes, proteomes and phosphoproteomes of 30 tissues of the model plant Arabidopsis thaliana . Our analysis provides initial answers to how many genes exist as proteins (more than 18,000), where they are expressed, in which approximate quantities (a dynamic range of more than six orders of magnitude) and to what extent they are phosphorylated (over 43,000 sites). We present examples of how the data may be used, such as to discover proteins that are translated from short open-reading frames, to uncover sequence motifs that are involved in the regulation of protein production, and to identify tissue-specific protein complexes or phosphorylation-mediated signalling events. Interactive access to this resource for the plant community is provided by the ProteomicsDB and ATHENA databases, which include powerful bioinformatics tools to explore and characterize Arabidopsis proteins, their modifications and interactions. A quantitative atlas of the transcriptomes, proteomes and phosphoproteomes of 30 tissues of the model plant Arabidopsis thaliana provides a valuable resource for plant research.
Antibody against early driver of neurodegeneration cis P-tau blocks brain injury and tauopathy
Traumatic brain injury (TBI), characterized by acute neurological dysfunction, is one of the best known environmental risk factors for chronic traumatic encephalopathy and Alzheimer’s disease, the defining pathologic features of which include tauopathy made of phosphorylated tau protein (P-tau). However, tauopathy has not been detected in the early stages after TBI, and how TBI leads to tauopathy is unknown. Here we find robust cis P-tau pathology after TBI in humans and mice. After TBI in mice and stress in vitro , neurons acutely produce cis P-tau, which disrupts axonal microtubule networks and mitochondrial transport, spreads to other neurons, and leads to apoptosis. This process, which we term ‘cistauosis’, appears long before other tauopathy. Treating TBI mice with cis antibody blocks cistauosis, prevents tauopathy development and spread, and restores many TBI-related structural and functional sequelae. Thus, cis P-tau is a major early driver of disease after TBI and leads to tauopathy in chronic traumatic encephalopathy and Alzheimer’s disease. The cis antibody may be further developed to detect and treat TBI, and prevent progressive neurodegeneration after injury. Here the cis form of tau protein, which disrupts axonal microtubules and transport, spreads to other neurons, and leads to apoptosis in vitro and in vivo , is found to be produced by neurons immediately after traumatic brain injury (TBI); treating TBI mice with cis antibody blocks early production of cis tau, prevents tauopathy and spread and restores brain structural and functional outcomes, and may be further developed to treat TBI and to prevent neurodegeneration after injury. cis P-tau tauopathy in traumatic brain injury The symptoms of traumatic brain injury (TBI), a common condition in players of contact sports and in the military, are associated with acute neurological dysfunction and TBI is a major risk factor for Alzheimer's disease. Tauopathy associated with the aggregation of phosphorylated tau protein (P-tau) in the brain is a defining feature of the neurodegeneration associated with chronic traumatic encephalopathy and Alzheimer's but it has not been observed in the early stages of TBI. Here Kun Ping Lu and colleagues show that tauopathy caused by cis P-tau, but not trans P-tau, is an early driver of brain injury in patients with TBI and in mouse models. Treating TBI mice with cis antibody blocks early production of cis P-tau and prevents further tauopathy and spread, and may be further developed to treat TBI after injury.
ApoE4 markedly exacerbates tau-mediated neurodegeneration in a mouse model of tauopathy
ApoE4 exacerbates tau pathogenesis, neuroinflammation and tau-mediated neurodegeneration independently of brain amyloid-β pathology, and exerts a ‘toxic’ gain of function whereas its absence is protective. Alzheimer's risk factor aggravates tau pathology APOE4 is the strongest genetic risk factor for late-onset Alzheimer disease. ApoE4 increases brain amyloid-β pathology compared to other ApoE isoforms. However, whether APOE independently influences tau pathology is not clear. David Holtzman and colleagues now show that ApoE4 exacerbates tau pathogenesis, neuroinflammation, and tau-mediated neurodegeneration independent of amyloid-β pathology. ApoE4 exerts a 'toxic' gain of function, whereas the absence of ApoE is protective. APOE4 is the strongest genetic risk factor for late-onset Alzheimer disease. ApoE4 increases brain amyloid-β pathology relative to other ApoE isoforms 1 . However, whether APOE independently influences tau pathology, the other major proteinopathy of Alzheimer disease and other tauopathies, or tau-mediated neurodegeneration, is not clear. By generating P301S tau transgenic mice on either a human ApoE knock-in (KI) or ApoE knockout (KO) background, here we show that P301S/E4 mice have significantly higher tau levels in the brain and a greater extent of somatodendritic tau redistribution by three months of age compared with P301S/E2, P301S/E3, and P301S/EKO mice. By nine months of age, P301S mice with different ApoE genotypes display distinct phosphorylated tau protein (p-tau) staining patterns. P301S/E4 mice develop markedly more brain atrophy and neuroinflammation than P301S/E2 and P301S/E3 mice, whereas P301S/EKO mice are largely protected from these changes. In vitro , E4-expressing microglia exhibit higher innate immune reactivity after lipopolysaccharide treatment. Co-culturing P301S tau-expressing neurons with E4-expressing mixed glia results in a significantly higher level of tumour-necrosis factor-α (TNF-α) secretion and markedly reduced neuronal viability compared with neuron/E2 and neuron/E3 co-cultures. Neurons co-cultured with EKO glia showed the greatest viability with the lowest level of secreted TNF-α. Treatment of P301S neurons with recombinant ApoE (E2, E3, E4) also leads to some neuronal damage and death compared with the absence of ApoE, with ApoE4 exacerbating the effect. In individuals with a sporadic primary tauopathy, the presence of an ε4 allele is associated with more severe regional neurodegeneration. In individuals who are positive for amyloid-β pathology with symptomatic Alzheimer disease who usually have tau pathology, ε4 -carriers demonstrate greater rates of disease progression. Our results demonstrate that ApoE affects tau pathogenesis, neuroinflammation, and tau-mediated neurodegeneration independently of amyloid-β pathology. ApoE4 exerts a ‘toxic’ gain of function whereas the absence of ApoE is protective.
Tetanus toxoid and CCL3 improve dendritic cell vaccines in mice and glioblastoma patients
A clinical trial in patients with glioblastoma shows increased immune and anti-tumour responses to dendritic cell vaccination after pre-conditioning the site of vaccination with tetanus toxoid (Td); similar results are also seen in mice in part due to the actions of the chemokine CCL3, and the findings may represent new ways to improve the efficacy of anti-cancer vaccines. A novel anti-tumour immunotherapy strategy John Sampson and colleagues report on a small clinical trial in glioblastoma patients that shows that the immune and anti-tumour response to dendritic cell vaccination is increased by pre-conditioning the site of vaccination with tetanus/diptheria toxoid (Td). Experiments in mice showed similar effects and demonstrated that pre-conditioning with Td enhanced migration of dendritic cells to the tumours, at least in part due to the action of the cytokine CCL3. Although the clinical trial reported is small, these findings may pave the way for new ways of improving the efficacy of anti-cancer vaccines. After stimulation, dendritic cells (DCs) mature and migrate to draining lymph nodes to induce immune responses 1 . As such, autologous DCs generated ex vivo have been pulsed with tumour antigens and injected back into patients as immunotherapy. While DC vaccines have shown limited promise in the treatment of patients with advanced cancers 2 , 3 , 4 including glioblastoma 5 , 6 , 7 , the factors dictating DC vaccine efficacy remain poorly understood. Here we show that pre-conditioning the vaccine site with a potent recall antigen such as tetanus/diphtheria (Td) toxoid can significantly improve the lymph node homing and efficacy of tumour-antigen-specific DCs. To assess the effect of vaccine site pre-conditioning in humans, we randomized patients with glioblastoma to pre-conditioning with either mature DCs 8 or Td unilaterally before bilateral vaccination with DCs pulsed with Cytomegalovirus phosphoprotein 65 (pp65) RNA. We and other laboratories have shown that pp65 is expressed in more than 90% of glioblastoma specimens but not in surrounding normal brain 9 , 10 , 11 , 12 , providing an unparalleled opportunity to subvert this viral protein as a tumour-specific target. Patients given Td had enhanced DC migration bilaterally and significantly improved survival. In mice, Td pre-conditioning also enhanced bilateral DC migration and suppressed tumour growth in a manner dependent on the chemokine CCL3. Our clinical studies and corroborating investigations in mice suggest that pre-conditioning with a potent recall antigen may represent a viable strategy to improve anti-tumour immunotherapy.
The functional landscape of the human phosphoproteome
Protein phosphorylation is a key post-translational modification regulating protein function in almost all cellular processes. Although tens of thousands of phosphorylation sites have been identified in human cells, approaches to determine the functional importance of each phosphosite are lacking. Here, we manually curated 112 datasets of phospho-enriched proteins, generated from 104 different human cell types or tissues. We re-analyzed the 6,801 proteomics experiments that passed our quality control criteria, creating a reference phosphoproteome containing 119,809 human phosphosites. To prioritize functional sites, we used machine learning to identify 59 features indicative of proteomic, structural, regulatory or evolutionary relevance and integrate them into a single functional score. Our approach identifies regulatory phosphosites across different molecular mechanisms, processes and diseases, and reveals genetic susceptibilities at a genomic scale. Several regulatory phosphosites were experimentally validated, including identifying a role in neuronal differentiation for phosphosites in SMARCC2, a member of the SWI/SNF chromatin-remodeling complex. Phosphorylation sites are ranked for functional relevance using a comprehensive, high-quality human phosphoproteome.
Phosphoproteomics of Arabidopsis Highly ABA-Induced1 identifies AT-Hook–Like10 phosphorylation required for stress growth regulation
The clade A protein phosphatase 2C Highly ABA-Induced 1 (HAI1) plays an important role in stress signaling, yet little information is available on HAI1-regulated phosphoproteins. Quantitative phosphoproteomics identified phosphopeptides of increased abundance in hai1-2 in unstressed plants and in plants exposed to low-water potential (drought) stress. The identity and localization of the phosphoproteins as well as enrichment of specific phosphorylation motifs indicated that these phosphorylation sites may be regulated directly by HAI1 or by HAI1-regulated kinases including mitogen-activated protein kinases, sucrose non-fermenting–related kinase 2, or casein kinases. One of the phosphosites putatively regulated by HAI1 was S313/S314 of AT-Hook–Like10 (AHL10), a DNA-binding protein of unclear function. HAI1 could directly dephosphorylate AHL10 in vitro, and the level of HAI1 expression affected the abundance of phosphorylated AHL10 in vivo. AHL10 S314 phosphorylation was critical for restriction of plant growth under low-water potential stress and for regulation of jasmonic acid and auxin-related gene expression as well as expression of developmental regulators including Shootmeristemless. These genes were also misregulated in hai1-2. AHL10 S314 phosphorylation was required for AHL10 complexes to form foci within the nucleoplasm, suggesting that S314 phosphorylation may control AHL10 association with the nuclear matrix or with other transcriptional regulators. These data identify a set of HAI1-affected phosphorylation sites, show that HAI1-regulated phosphorylation of AHL10 S314 controls AHL10 function and localization, and indicate that HAI1-AHL10 signaling coordinates growthwith stress and defense responses.
A phosphatase cascade by which rewarding stimuli control nucleosomal response
Appetite and drug addiction Disruptions in dopamine signalling have been implicated in psychiatric disorders, such as schizophrenia and drug addiction. The phosphoprotein DARPP-32 is a prominent mediator of dopamine signalling in the striatum, a part of the brain where dopaminergic activation has been linked to reward and learning. Now a novel signal transduction cascade involving nuclear accumulation of DARPP-32 has been discovered, induced by both drugs of abuse and natural stimuli such as food. Disruption of this cascade alters the behavioural effects of the drugs and decreases motivation for food, suggesting a role for this mechanism in the in vivo actions of dopamine signalling. Dopamine orchestrates motor behaviour and reward-driven learning. Perturbations of dopamine signalling have been implicated in several neurological and psychiatric disorders, and in drug addiction. The actions of dopamine are mediated in part by the regulation of gene expression in the striatum, through mechanisms that are not fully understood. Here we show that drugs of abuse, as well as food reinforcement learning, promote the nuclear accumulation of 32-kDa dopamine-regulated and cyclic-AMP-regulated phosphoprotein (DARPP-32). This accumulation is mediated through a signalling cascade involving dopamine D1 receptors, cAMP-dependent activation of protein phosphatase-2A, dephosphorylation of DARPP-32 at Ser 97 and inhibition of its nuclear export. The nuclear accumulation of DARPP-32, a potent inhibitor of protein phosphatase-1, increases the phosphorylation of histone H3, an important component of nucleosomal response. Mutation of Ser 97 profoundly alters behavioural effects of drugs of abuse and decreases motivation for food, underlining the functional importance of this signalling cascade.
The SARS-CoV-2 nucleocapsid phosphoprotein forms mutually exclusive condensates with RNA and the membrane-associated M protein
The multifunctional nucleocapsid (N) protein in SARS-CoV-2 binds the ~30 kb viral RNA genome to aid its packaging into the 80–90 nm membrane-enveloped virion. The N protein is composed of N-terminal RNA-binding and C-terminal dimerization domains that are flanked by three intrinsically disordered regions. Here we demonstrate that the N protein’s central disordered domain drives phase separation with RNA, and that phosphorylation of an adjacent serine/arginine rich region modulates the physical properties of the resulting condensates. In cells, N forms condensates that recruit the stress granule protein G3BP1, highlighting a potential role for N in G3BP1 sequestration and stress granule inhibition. The SARS-CoV-2 membrane (M) protein independently induces N protein phase separation, and three-component mixtures of N + M + RNA form condensates with mutually exclusive compartments containing N + M or N + RNA, including annular structures in which the M protein coats the outside of an N + RNA condensate. These findings support a model in which phase separation of the SARS-CoV-2 N protein contributes both to suppression of the G3BP1-dependent host immune response and to packaging genomic RNA during virion assembly. The SARS-CoV-2 nucleocapsid (N) protein binds the viral RNA genome and contains two ordered domains flanked by three intrinsically-disordered regions. Here, the authors show that RNA binding induces liquid-liquid phase separation of N, which is driven by its central intrinsically-disordered region and is modulated by phosphorylation. The SARS-CoV-2 Membrane (M) protein also phase-separates with N, and three-component mixtures of N + M + RNA form mutually exclusive compartments containing N + M or N + RNA.