Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
898 result(s) for "Phototoxicity"
Sort by:
Quantitative phase imaging in biomedicine
Quantitative phase imaging (QPI) has emerged as a valuable method for investigating cells and tissues. QPI operates on unlabelled specimens and, as such, is complementary to established fluorescence microscopy, exhibiting lower phototoxicity and no photobleaching. As the images represent quantitative maps of optical path length delays introduced by the specimen, QPI provides an objective measure of morphology and dynamics, free of variability due to contrast agents. Owing to the tremendous progress witnessed especially in the past 10–15 years, a number of technologies have become sufficiently reliable and translated to biomedical laboratories. Commercialization efforts are under way and, as a result, the QPI field is now transitioning from a technology-development-driven to an application-focused field. In this Review, we aim to provide a critical and objective overview of this dynamic research field by presenting the scientific context, main principles of operation and current biomedical applications.
Skin protection from solar ultraviolet radiation using natural compounds: a review
Skin exposure to solar ultraviolet radiation and pollutants causes several skin disorders, calling for protection methods such as sunscreen application. However, common sunscreen contains chemicals that have displayed toxicity when exposed to ultraviolet radiation. Therefore, alternatives approaches have been recently developed, such as the use of natural phytochemicals as active ingredients in photoprotection preparations. Here, we review skin protection with focus on the physics of ultraviolet radiation and photoprotection by ultraviolet filters. We present sensors for measuring ultraviolet radiation and ultraviolet radiation in ecosystems. We discuss the phototoxicity of drugs, preservatives, personal care products, and pollutants. Photocarcinogenesis, photoallergy, photostability, and toxicity of sunscreen ingredients and their impacts on human health and skin, are also reviewed. We observed that phytochemicals are promising for photoprotection due to their ability to absorb photon energy, and thus act as antioxidants.
Single-shot isotropic differential interference contrast microscopy
Differential interference contrast (DIC) microscopy allows high-contrast, low-phototoxicity, and label-free imaging of transparent biological objects, and has been applied in the field of cellular morphology, cell segmentation, particle tracking, optical measurement and others. Commercial DIC microscopy based on Nomarski or Wollaston prism resorts to the interference of two polarized waves with a lateral differential offset (shear) and axial phase shift (bias). However, the shear generated by these prisms is limited to the rectilinear direction, unfortunately resulting in anisotropic contrast imaging. Here we propose an ultracompact metasurface-assisted isotropic DIC (i-DIC) microscopy based on a grand original pattern of radial shear interferometry, that converts the rectilinear shear into rotationally symmetric along radial direction, enabling single-shot isotropic imaging capabilities. The i-DIC presents a complementary fusion of typical meta-optics, traditional microscopes and integrated optical system, and showcases the promising and synergetic advancements in edge detection, particle motion tracking, and label-free cellular imaging. The authors present a metasurface-assisted isotropic DIC microscopy technique. It is based on an original pattern of radial shear interferometry, that converts rectilinear shear into rotationally symmetric radial shear, enabling single-shot isotropic imaging capabilities.
Current Advances in Photodynamic Therapy (PDT) and the Future Potential of PDT-Combinatorial Cancer Therapies
Photodynamic therapy (PDT) is a two-stage treatment that implies the use of light energy, oxygen, and light-activated compounds (photosensitizers) to elicit cancerous and precancerous cell death after light activation (phototoxicity). The biophysical, bioengineering aspects and its combinations with other strategies are highlighted in this review, both conceptually and as they are currently applied clinically. We further explore the recent advancements of PDT with the use of nanotechnology, including quantum dots as innovative photosensitizers or energy donors as well as the combination of PDT with radiotherapy and immunotherapy as future promising cancer treatments. Finally, we emphasize the potential significance of organoids as physiologically relevant models for PDT.
A highly potent ruthenium(II)-sonosensitizer and sonocatalyst for in vivo sonotherapy
As a basic structure of most polypyridinal metal complexes, [Ru(bpy) 3 ] 2+ , has the advantages of simple structure, facile synthesis and high yield, which has great potential for scientific research and application. However, sonodynamic therapy (SDT) performance of [Ru(bpy) 3 ] 2+ has not been investigated so far. SDT can overcome the tissue-penetration and phototoxicity problems compared to photodynamic therapy. Here, we report that [Ru(bpy) 3 ] 2+ is a highly potent sonosensitizer and sonocatalyst for sonotherapy in vitro and in vivo. [Ru(bpy) 3 ] 2+ can produce singlet oxygen ( 1 O 2 ) and sono-oxidize endogenous 1,4-dihydronicotinamide adenine dinucleotide (NADH) under ultrasound (US) stimulation in cancer cells. Furthermore, [Ru(bpy) 3 ] 2+ enables effective destruction of mice tumors, and the therapeutic effect can reach deep tissues over 10 cm under US irradiation. This work paves a way for polypyridinal metal complexes to be applied to the noninvasive precise sonotherapy of cancer. Sonodynamic therapy has therapeutic promise due to its safety and good tissue penetration, but is currently bottlenecked due to a lack of efficient and safe sonosensitizers. Here the authors show that [Ru(bpy) 3 ] 2+ can produce singlet oxygen and sonooxidize NADH in deep tissue, and destroy mouse tumors effectively.
Multi-color live-cell STED nanoscopy of mitochondria with a gentle inner membrane stain
Capturing mitochondria’s intricate and dynamic structure poses a daunting challenge for optical nanoscopy. Different labeling strategies have been demonstrated for live-cell stimulated emission depletion (STED) microscopy of mitochondria, but orthogonal strategies are yet to be established, and image acquisition has suffered either from photodamage to the organelles or from rapid photobleaching. Therefore, live-cell nanoscopy of mitochondria has been largely restricted to two-dimensional (2D) single-color recordings of cancer cells. Here, by conjugation of cyclooctatetraene (COT) to a benzo-fused cyanine dye, we report a mitochondrial inner membrane (IM) fluorescent marker, PK Mito Orange (PKMO), featuring efficient STED at 775 nm, strong photostability, and markedly reduced phototoxicity. PKMO enables super-resolution (SR) recordings of IM dynamics for extended periods in immortalized mammalian cell lines, primary cells, and organoids. Photostability and reduced phototoxicity of PKMO open the door to live-cell three-dimensional (3D) STED nanoscopy of mitochondria for 3D analysis of the convoluted IM. PKMO is optically orthogonal with green and far-red markers, allowing multiplexed recordings of mitochondria using commercial STED microscopes. Using multi-color STED microscopy, we demonstrate that imaging with PKMO can capture interactions of mitochondria with different cellular components such as the endoplasmic reticulum (ER) or the cytoskeleton, Bcl-2-associated X protein (BAX)-induced apoptotic process, or crista phenotypes in genetically modified cells, all at sub-100 nm resolution. Thereby, this work offers a versatile tool for studying mitochondrial IM architecture and dynamics in a multiplexed manner.
Tracking cancer drugs in living cells by thermal profiling of the proteome
To understand both the beneficial and the side effects of a drug, one would need to know its full binding profile to all cellular proteins. Savitski et al. take significant steps toward meeting this daunting challenge. They monitored the unfolding or “melting” of over 7000 human proteins and measured how small-molecule binding changes individual melting profiles. As a proof of principle, over 50 targets were identified for an inhibitor known to bind a broad spectrum of kinases. Two cancer drugs, vemurafib and Alectinib, are known to have a side effect of photosensitivity. The thermal profiling approach identified drug-protein interactions responsible for these side effects. Science , this issue 10.1126/science.1255784 Monitoring drug effects on the thermal profile of a cell’s proteins identifies drug targets and off-targets. The thermal stability of proteins can be used to assess ligand binding in living cells. We have generalized this concept by determining the thermal profiles of more than 7000 proteins in human cells by means of mass spectrometry. Monitoring the effects of small-molecule ligands on the profiles delineated more than 50 targets for the kinase inhibitor staurosporine. We identified the heme biosynthesis enzyme ferrochelatase as a target of kinase inhibitors and suggest that its inhibition causes the phototoxicity observed with vemurafenib and alectinib. Thermal shifts were also observed for downstream effectors of drug treatment. In live cells, dasatinib induced shifts in BCR-ABL pathway proteins, including CRK/CRKL. Thermal proteome profiling provides an unbiased measure of drug-target engagement and facilitates identification of markers for drug efficacy and toxicity.
Event-driven acquisition for content-enriched microscopy
A common goal of fluorescence microscopy is to collect data on specific biological events. Yet, the event-specific content that can be collected from a sample is limited, especially for rare or stochastic processes. This is due in part to photobleaching and phototoxicity, which constrain imaging speed and duration. We developed an event-driven acquisition framework, in which neural-network-based recognition of specific biological events triggers real-time control in an instant structured illumination microscope. Our setup adapts acquisitions on-the-fly by switching between a slow imaging rate while detecting the onset of events, and a fast imaging rate during their progression. Thus, we capture mitochondrial and bacterial divisions at imaging rates that match their dynamic timescales, while extending overall imaging durations. Because event-driven acquisition allows the microscope to respond specifically to complex biological events, it acquires data enriched in relevant content. Event-driven acquisition uses neural-network-based recognition of specific biological events to trigger switching between slow and fast super-resolution imaging, enriching the capture of interesting events with high spatiotemporal resolution.
Exfoliated near infrared fluorescent silicate nanosheets for (bio)photonics
Imaging of complex (biological) samples in the near-infrared (NIR) is beneficial due to reduced light scattering, absorption, phototoxicity, and autofluorescence. However, there are few NIR fluorescent materials known and suitable for biomedical applications. Here we exfoliate the layered pigment CaCuSi 4 O 10 (Egyptian Blue, EB) via ball milling and facile tip sonication into NIR fluorescent nanosheets (EB-NS). The size of EB-NS can be tailored to diameters <20 nm and heights down to 1 nm. EB-NS fluoresce at 910 nm and the fluorescence intensity correlates with the number of Cu 2+ ions. Furthermore, EB-NS display no bleaching and high brightness compared with other NIR fluorophores. The versatility of EB-NS is demonstrated by in-vivo single-particle tracking and microrheology measurements in Drosophila melanogaster embryos. EB-NS can be uptaken by plants and remotely detected in a low-cost stand-off detection setup. In summary, EB-NS have the potential for a wide range of bioimaging applications. Near-infrared (NIR) fluorophores have attracted interest for bioimaging; yet availability, biocompatibility and application can be an issue. Here, the authors report on the development of Egyptian Blue nanosheets with high NIR fluorescence and photostability demonstrating bioimaging applications in vivo.