Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
1,757 result(s) for "Phylogenetic Comparative Methods"
Sort by:
The comparative approach in evolutionary anthropology and biology
Comparison is fundamental to evolutionary anthropology. When scientists study chimpanzee cognition, for example, they compare chimp performance on cognitive tasks to the performance of human children on the same tasks. And when new fossils are found, such as those of the tiny humans of Flores, scientists compare these remains to other fossils and contemporary humans. Comparison provides a way to draw general inferences about the evolution of traits and therefore has long been the cornerstone of efforts to understand biological and cultural diversity. Individual studies of fossilized remains, living species, or human populations are the essential units of analysis in a comparative study; bringing these elements into a broader comparative framework allows the puzzle pieces to fall into place, creating a means of testing adaptive hypotheses and generating new ones. With this book, Charles L. Nunn intends to ensure that evolutionary anthropologists and organismal biologists have the tools to realize the potential of comparative research. Nunn provides a wide-ranging investigation of the comparative foundations of evolutionary anthropology in past and present research, including studies of animal behavior, biodiversity, linguistic evolution, allometry, and cross-cultural variation. He also points the way to the future, exploring the new phylogeny-based comparative approaches and offering a how-to manual for scientists who wish to incorporate these new methods into their research.
The New Foundations of Evolution
This book presents a history of microbial evolutionary biology from the 19th century to the present. It follows the research of molecular evolutionists who explore the origins of the genetic system and the primary life forms: three domains and multiple kingdoms, created by mechanisms very unlike those considered by Darwin and his followers.
phytools 2.0: an updated R ecosystem for phylogenetic comparative methods (and other things)
Phylogenetic comparative methods comprise the general endeavor of using an estimated phylogenetic tree (or set of trees) to make secondary inferences: about trait evolution, diversification dynamics, biogeography, community ecology, and a wide range of other phenomena or processes. Over the past ten years or so, the phytools R package has grown to become an important research tool for phylogenetic comparative analysis. phytools is a diverse contributed R library now consisting of hundreds of different functions covering a variety of methods and purposes in phylogenetic biology. As of the time of writing, phytools included functionality for fitting models of trait evolution, for reconstructing ancestral states, for studying diversification on trees, and for visualizing phylogenies, comparative data, and fitted models, as well numerous other tasks related to phylogenetic biology. Here, I describe some significant features of and recent updates to phytools , while also illustrating several popular workflows of the phytools computational software.
Multivariate Phylogenetic Comparative Methods
Recent years have seen increased interest in phylogenetic comparative analyses of multivariate data sets, but to date the varied proposed approaches have not been extensively examined. Here we review the mathematical properties required of any multivariate method, and specifically evaluate existing multivariate phylogenetic comparative methods in this context. Phylogenetic comparative methods based on the full multivariate likelihood are robust to levels of covariation among trait dimensions and are insensitive to the orientation of the data set, but display increasing model misspecification as the number of trait dimensions increases. This is because the expected evolutionary covariance matrix (V) used in the likelihood calculations becomes more ill-conditioned as trait dimensionality increases, and as evolutionary models become more complex. Thus, these approaches are only appropriate for data sets with few traits and many species. Methods that summarize patterns across trait dimensions treated separately (e.g., SURFACE) incorrectly assume independence among trait dimensions, resulting in nearly a 100% model misspecification rate. Methods using pairwise composite likelihood are highly sensitive to levels of trait covariation, the orientation of the data set, and the number of trait dimensions. The consequences of these debilitating deficiencies are that a user can arrive at differing statistical conclusions, and therefore biological inferences, simply from a dataspace rotation, like principal component analysis. By contrast, algebraic generalizations of the standard phylogenetic comparative toolkit that use the trace of covariance matrices are insensitive to levels of trait covariation, the number of trait dimensions, and the orientation of the data set. Further, when appropriate permutation tests are used, these approaches display acceptable Type I error and statistical power. We conclude that methods summarizing information across trait dimensions, as well as pairwise composite likelihood methods should be avoided, whereas algebraic generalizations of the phylogenetic comparative toolkit provide a useful means of assessing macroevolutionary patterns in multivariate data. Finally, we discuss areas in which multivariate phylogenetic comparative methods are still in need of future development; namely highly multivariate Ornstein–Uhlenbeck models and approaches for multivariate evolutionary model comparisons.
Phylogenetic Comparative Methods and the Evolution of Multivariate Phenotypes
Evolutionary biology is multivariate, and advances in phylogenetic comparative methods for multivariate phenotypes have surged to accommodate this fact. Evolutionary trends in multivariate phenotypes are derived from distances and directions between species in a multivariate phenotype space. For these patterns to be interpretable, phenotypes should be characterized by traits in commensurate units and scale. Visualizing such trends, as is achieved with phylomorphospaces, should continue to play a prominent role in macroevolutionary analyses. Evaluating phylogenetic generalized least squares (PGLS) models (e.g., phylogenetic analysis of variance and regression) is valuable, but using parametric procedures is limited to only a few phenotypic variables. In contrast, nonparametric, permutation-based PGLS methods provide a flexible alternative and are thus preferred for high-dimensional multivariate phenotypes. Permutation-based methods for evaluating covariation within multivariate phenotypes are also well established and can test evolutionary trends in phenotypic integration. However, comparing evolutionary rates and modes in multivariate phenotypes remains an important area of future development.
Comparative Analysis of Principal Components Can be Misleading
Most existing methods for modeling trait evolution are univariate, although researchers are often interested in investigating evolutionary patterns and processes across multiple traits. Principal components analysis (PCA) is commonly used to reduce the dimensionality of multivariate data so that univariate trait models can be fit to individual principal components. The problem with using standard PCA on phylogenetically structured data has been previously pointed out yet it continues to be widely used in the literature. Here we demonstrate precisely how using standard PCA can mislead inferences: The first few principal components of traits evolved under constant-rate multivariate Brownian motion will appear to have evolved via an \"early burst\" process. A phylogenetic PCA (pPCA) has been proprosed to alleviate these issues. However, when the true model of trait evolution deviates from the model assumed in the calculation of the pPCA axes, we find that the use of pPCA suffers from similar artifacts as standard PCA. We show that data sets with high effective dimensionality are particularly likely to lead to erroneous inferences. Ultimately, all of the problems we report stem from the same underlying issue—by considering only the first few principal components as univariate traits, we are effectively examining a biased sample of a multivariate pattern. These results highlight the need for truly multivariate phylogenetic comparative methods. As these methods are still being developed, we discuss potential alternative strategies for using and interpreting models fit to univariate axes of multivariate data.
Phylogenetic ANOVA
Phylogenetic regression is frequently used in macroevolutionary studies, and its statistical properties have been thoroughly investigated. By contrast, phylogenetic ANOVA has received relatively less attention, and the conditions leading to incorrect statistical and biological inferences when comparing multivariate phenotypes among groups remain underexplored. Here, we propose a refined method of randomizing residuals in a permutation procedure (RRPP) for evaluating phenotypic differences among groups while conditioning the data on the phylogeny. We show that RRPP displays appropriate statistical properties for both phylogenetic ANOVA and regression models, and for univariate and multivariate datasets. For ANOVA, we find that RRPP exhibits higher statistical power than methods utilizing phylogenetic simulation. Additionally, we investigate how group dispersion across the phylogeny affects inferences, and reveal that highly aggregated groups generate strong and significant correlations with the phylogeny, which reduce statistical power and subsequently affect biological interpretations. We discuss the broader implications of this phylogenetic group aggregation, and its relation to challenges encountered with other comparative methods where one or a few transitions in discrete traits are observed on the phylogeny. Finally, we recommend that phylogenetic comparative studies of continuous trait data use RRPP for assessing the significance of indicator variables as sources of trait variation.
PhyloNetworks: A Package for Phylogenetic Networks
PhyloNetworks is a Julia package for the inference, manipulation, visualization, and use of phylogenetic networks in an interactive environment. Inference of phylogenetic networks is done with maximum pseudolikelihood from gene trees or multi-locus sequences (SNaQ), with possible bootstrap analysis. PhyloNetworks is the first software providing tools to summarize a set of networks (from a bootstrap or posterior sample) with measures of tree edge support, hybrid edge support, and hybrid node support. Networks can be used for phylogenetic comparative analysis of continuous traits, to estimate ancestral states or do a phylogenetic regression. The software is available in open source and with documentation at https://github.com/crsl4/PhyloNetworks.jl
Competition and hybridization drive interspecific territoriality in birds
Costly interactions between species that arise as a by-product of ancestral similarities in communication signals are expected to persist only under specific evolutionary circumstances. Territorial aggression between species, for instance, is widely assumed to persist only when extrinsic barriers prevent niche divergence or selection in sympatry is too weak to overcome gene flow from allopatry. However, recent theoretical and comparative studies have challenged this view. Here we present a large-scale, phylogenetic analysis of the distribution and determinants of interspecific territoriality. We find that interspecific territoriality is widespread in birds and strongly associated with hybridization and resource overlap during the breeding season. Contrary to the view that territoriality only persists between species that rarely breed in the same areas or where niche divergence is constrained by habitat structure, we find that interspecific territoriality is positively associated with breeding habitat overlap and unrelated to habitat structure. Furthermore, our results provide compelling evidence that ancestral similarities in territorial signals are maintained and reinforced by selection when interspecific territoriality is adaptive. The territorial signals linked to interspecific territoriality in birds depend on the evolutionary age of interacting species, plumage at shallow (within-family) timescales, and song at deeper (between-family) timescales. Evidently, territorial interactions between species have persisted and shaped phenotypic diversity on a macroevolutionary timescale.
Phylogenetic signal in primate behaviour, ecology and life history
Examining biological diversity in an explicitly evolutionary context has been the subject of research for several decades, yet relatively recent advances in analytical techniques and the increasing availability of species-level phylogenies, have enabled scientists to ask new questions. One such approach is to quantify phylogenetic signal to determine how trait variation is correlated with the phylogenetic relatedness of species. When phylogenetic signal is high, closely related species exhibit similar traits, and this biological similarity decreases as the evolutionary distance between species increases. Here, we first review the concept of phylogenetic signal and suggest how to measure and interpret phylogenetic signal in species traits. Second, we quantified phylogenetic signal in primates for 31 variables, including body mass, brain size, life-history, sexual selection, social organization, diet, activity budget, ranging patterns and climatic variables. We found that phylogenetic signal varies extensively across and even within trait categories. The highest values are exhibited by brain size and body mass, moderate values are found in the degree of territoriality and canine size dimorphism, while low values are displayed by most of the remaining variables. Our results have important implications for the evolution of behaviour and ecology in primates and other vertebrates.