Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
642
result(s) for
"Physcomitrella patens"
Sort by:
Studies of moss reproductive development indicate that auxin biosynthesis in apical stem cells may constitute an ancestral function for focal growth control
2021
• The plant hormone auxin is a key factor for regulation of plant development, and this function was probably reinforced during the evolution of early land plants. We have extended the available toolbox to allow detailed studies of how auxin biosynthesis and responses are regulated in moss reproductive organs, their stem cells and gametes to better elucidate the function of auxin in the morphogenesis of early land plants.
• We measured auxin metabolites and identified IPyA (indole-3-pyruvic acid) as the main biosynthesis pathway in Physcomitrium (Physcomitrella) patens and established knock-out, overexpressor and reporter lines for biosynthesis genes which were analyzed alongside previously reported auxin-sensing and transport reporters.
• Vegetative and reproductive apical stem cells synthesize auxin. Sustained stem cell activity depends on an inability to sense the auxin produced while progeny of the stem cells respond to the auxin, aiding in the control of cell division, expansion and differentiation. Gamete precursors are dependent on a certain degree of auxin sensing, while the final differentiation is a low auxin-sensing process.
• Tha data presented indicate that low auxin activity may represent a conserved hallmark of land plant gametes, and that local auxin biosynthesis in apical stem cells may be part of an ancestral mechanism to control focal growth.
Journal Article
Cytoplasmic MTOCs control spindle orientation for asymmetric cell division in plants
by
Hasebe, Mitsuyasu
,
Van Damme, Daniël
,
Boruc, Joanna
in
Actins - genetics
,
Actins - metabolism
,
Angiosperms
2017
Proper orientation of the cell division axis is critical for asymmetric cell divisions that underpin cell differentiation. In animals, centrosomes are the dominant microtubule organizing centers (MTOC) and play a pivotal role in axis determination by orienting the mitotic spindle. In land plants that lack centrosomes, a critical role of a microtubular ring structure, the preprophase band (PPB), has been observed in this process; the PPB is required for orienting (before prophase) and guiding (in telophase) the mitotic apparatus. However, plants must possess additional mechanisms to control the division axis, as certain cell types or mutants do not form PPBs. Here, using live imaging of the gametophore of the moss Physcomitrella patens, we identified acentrosomal MTOCs, which we termed “gametosomes,” appearing de novo and transiently in the prophase cytoplasm independent of PPB formation. We show that gametosomes are dispensable for spindle formation but required for metaphase spindle orientation. In some cells, gametosomes appeared reminiscent of the bipolar MT “polar cap” structure that forms transiently around the prophase nucleus in angiosperms. Specific disruption of the polar caps in tobacco cells misoriented the metaphase spindles and frequently altered the final division plane, indicating that they are functionally analogous to the gametosomes. These results suggest a broad use of transient MTOC structures as the spindle orientation machinery in plants, compensating for the evolutionary loss of centrosomes, to secure the initial orientation of the spindle in a spatial window that allows subsequent fine-tuning of the division plane axis by the guidance machinery.
Journal Article
Protein kinase PpCIPK1 modulates plant salt tolerance in Physcomitrella patens
2021
Key messageThis work demonstrates that PpCIPK1, a putative protein kinase, participates in regulating plant salt tolerance in moss Physcomitrella patens.Calcineurin B-Like protein (CBL)-interacting protein kinases (CIPKs) have been reported to be involved in multiple signaling networks and function in plant growth and stress responses, however, their biological functions in non-seed plants have not been well characterized. In this study, we report that PpCIPK1, a putative protein kinase, participates in regulating plant salt tolerance in moss Physcomitrella patens (P. patens). Phylogenetic analysis revealed that PpCIPK1 shared high similarity with its homologs in higher plants. PpCIPK1 transcription level was induced upon salt stress in P. patens. Using homologous recombination, we constructed PpCIPK1 knockout mutant lines (PpCIPK1 KO). Salt sensitivity analysis showed that independent PpCIPK1 KO plants exhibited severe growth inhibition and developmental deficiency of gametophytes under salt stress condition compared to that of wild-type P. patens (WT). Consistently, ionic homeostasis was disrupted in plants due to PpCIPK1 deletion, and high level of H2O2 was accumulated in PpCIPK1 KO than that in WT. Furthermore, PpCIPK1 functions in regulating photosynthetic activity in response to salt stress. Interestingly, we observed that PpCIPK1 could completely rescue the salt-sensitive phenotype of sos2-1 to WT level in Arabidopsis, indicating that AtSOS2 and PpCIPK1 are functionally conserved. In conclusion, our work provides evidence that PpCIPK1 participates in salt tolerance regulation in P. patens.
Journal Article
Rapid formin-mediated actin-filament elongation is essential for polarized plant cell growth
by
van Gisbergen, Peter A.C
,
Bezanilla, Magdalena
,
Franco, Paula
in
actin
,
Actin Cytoskeleton - metabolism
,
Actins
2009
Formins are present in all eukaryotes and are essential for the creation of actin-based structures responsible for diverse cellular processes. Because multicellular organisms contain large formin gene families, establishing the physiological functions of formin isoforms has been difficult. Using RNAi, we analyzed the function of all 9 formin genes within the moss Physcomitrella patens. We show that plants lacking class II formins (For2) are severely stunted and composed of spherical cells with disrupted actin organization. In contrast, silencing of all other formins results in normal elongated cell morphology and actin organization. Consistent with a role in polarized growth, For2 are apically localized in growing cells. We show that an N-terminal phosphatase tensin (PTEN)-like domain mediates apical localization. The PTEN-like domain is followed by a conserved formin homology (FH)1-FH2 domain, known to promote actin polymerization. To determine whether apical localization of any FH1-FH2 domain mediates polarized growth, we performed domain swapping. We found that only the class II FH1-FH2, in combination with the PTEN-like domain, rescues polarized growth, because it cannot be replaced with a similar domain from a For1. We used in vitro polymerization assays to dissect the functional differences between these FH1-FH2 domains. We found that both the FH1 and the FH2 domains from For2 are required to mediate exceptionally rapid rates of actin filament elongation, much faster than any other known formin. Thus, our data demonstrate that rapid rates of actin elongation are critical for driving the formation of apical filamentous actin necessary for polarized growth.
Journal Article
The Physcomitrella patens Chloroplast Proteome Changes in Response to Protoplastation
by
Babalyan, Konstantin
,
Fesenko, Igor
,
Urban, Anatoly
in
Ascorbic acid
,
Biosynthesis
,
Chloroplast proteome
2016
Plant protoplasts are widely used for genetic manipulation and functional studies in transient expression systems. However, little is known about the molecular pathways involved in a cell response to the combined stress factors resulted from protoplast generation. Plants often face more than one type of stress at a time, and how plants respond to combined stress factors is therefore of great interest. Here, we used protoplasts of the moss
as a model to study the effects of short-term stress on the chloroplast proteome. Using label-free comparative quantitative proteomic analysis (SWATH-MS), we quantified 479 chloroplast proteins, 219 of which showed a more than 1.4-fold change in abundance in protoplasts. We additionally quantified 1451 chloroplast proteins using emPAI. We observed degradation of a significant portion of the chloroplast proteome following the first hour of stress imposed by the protoplast isolation process. Electron-transport chain (ETC) components underwent the heaviest degradation, resulting in the decline of photosynthetic activity. We also compared the proteome changes to those in the transcriptional level of nuclear-encoded chloroplast genes. Globally, the levels of the quantified proteins and their corresponding mRNAs showed limited correlation. Genes involved in the biosynthesis of chlorophyll and components of the outer chloroplast membrane showed decreases in both transcript and protein abundance. However, proteins like dehydroascorbate reductase 1 and 2-cys peroxiredoxin B responsible for ROS detoxification increased in abundance. Further, genes such as thylakoid ascorbate peroxidase were induced at the transcriptional level but down-regulated at the proteomic level. Together, our results demonstrate that the initial chloroplast reaction to stress is due changes at the proteomic level.
Journal Article
Identification and functional characterization of two Delta super(12)-fatty acid desaturases associated with essential linoleic acid biosynthesis in Physcomitrella patens
2013
Two Delta super(12)-desaturases associated with the primary steps of long-chain polyunsaturated fatty acid (LC-PUFA) biosynthesis were successfully cloned from Physcomitrella patens and their functions identified. The open reading frames (ORFs) of PpFAD2-1 and PpFAD2-2 consisted of 1,128 bp and code for 375 amino acids. Their deduced polypeptides showed 62-64 % identity to microsomal Delta super(12)-desaturases from other higher plants, and each contained the three histidine clusters typical of the catalytic domains of such enzymes. Yeast cells transformed with plasmid constructs containing PpFAD2-1 or PpFAD2-2 produced an appreciable amount of hexadecadienoic (16:2 Delta super(9,12)) and linoleic acids (18:2 Delta super(9,12)), not normally present in wild-type yeast cells, indicating that the genes encoded functional Delta super(12)-desaturase enzymes. In addition, reduction of the growth temperature from 30 to 15 degree C resulted in increased accumulation of unsaturated fatty acid products.
Journal Article
DNA METHYLTRANSFERASE 1 is involved in super(m)CG and super(m)CCG DNA methylation and is essential for sporophyte development in Physcomitrella patens
2015
DNA methylation has a crucial role in plant development regulating gene expression and silencing of transposable elements. Maintenance DNA methylation in plants occurs at symmetrical super(m)CG and super(m)CHG contexts ( super(m) = methylated) and is maintained by DNA METHYLTRANSFERASE 1 (MET1) and CHROMOMETHYLASE (CMT) DNA methyltransferase protein families, respectively. While angiosperm genomes encode for several members of MET1 and CMT families, the moss Physcomitrella patens, serving as a model for early divergent land plants, carries a single member of each family. To determine the function of P. patens PpMET we generated Delta Ppmet deletion mutant which lost super(m)CG and unexpectedly super(m)CCG methylation at loci tested. In order to evaluate the extent of super(m)CCG methylation by MET1, we reexamined the Arabidopsis thaliana Atmet1 mutant methylome and found a similar pattern of methylation loss, suggesting that maintenance of DNA methylation by MET1 is conserved through land plant evolution. While Delta Ppmet displayed no phenotypic alterations during its gametophytic phase, it failed to develop sporophytes, indicating that PpMET plays a role in gametogenesis or early sporophyte development. Expression array analysis revealed that the deletion of PpMET resulted in upregulation of two genes and multiple repetitive sequences. In parallel, expression analysis of the previously reported Delta Ppcmt mutant showed that lack of PpCMT triggers overexpression of genes. This overexpression combined with loss of super(m)CHG and its pleiotropic phenotype, implies that PpCMT has an essential evolutionary conserved role in the epigenetic control of gene expression. Collectively, our results suggest functional conservation of MET1 and CMT families during land plant evolution. A model describing the relationship between MET1 and CMT in CCG methylation is presented.
Journal Article
Evolution of chloroplast retrograde signaling facilitates green plant adaptation to land
by
Ramesh, Sunita
,
Randall, David
,
Blatt, Michael R.
in
Abscisic acid
,
Adaptation
,
Adaptation, Physiological
2019
Chloroplast retrograde signaling networks are vital for chloroplast biogenesis, operation, and signaling, including excess light and drought stress signaling. To date, retrograde signaling has been considered in the context of land plant adaptation, but not regarding the origin and evolution of signaling cascades linking chloroplast function to stomatal regulation. We show that key elements of the chloroplast retrograde signaling process, the nucleotide phosphatase (SAL1) and 3′-phosphoadenosine-5′-phosphate (PAP) metabolism, evolved in streptophyte algae—the algal ancestors of land plants. We discover an early evolution of SAL1-PAP chloroplast retrograde signaling in stomatal regulation based on conserved gene and protein structure, function, and enzyme activity and transit peptides of SAL1s in species including flowering plants, the fern Ceratopteris richardii, and the moss Physcomitrella patens. Moreover, we demonstrate that PAP regulates stomatal closure via secondary messengers and ion transport in guard cells of these diverse lineages. The origin of stomata facilitated gas exchange in the earliest land plants. Our findings suggest that the conquest of land by plants was enabled by rapid response to drought stress through the deployment of an ancestral SAL1-PAP signaling pathway, intersecting with the core abscisic acid signaling in stomatal guard cells.
Journal Article
Balancing protection and efficiency in the regulation of photosynthetic electron transport across plant evolution
2019
Photosynthetic electron transport requires continuous modulation to maintain the balance between light availability and metabolic demands. Multiple mechanisms for the regulation of electron transport have been identified and are unevenly distributed among photosynthetic organisms. Flavodiiron proteins (FLVs) influence photosynthetic electron transport by accepting electrons downstream of photosystem I to reduce oxygen to water. FLV activity has been demonstrated in cyanobacteria, green algae and mosses to be important in avoiding photosystem I overreduction upon changes in light intensity. FLV-encoding sequences were nevertheless lost during evolution by angiosperms, suggesting that these plants increased the efficiency of other mechanisms capable of accepting electrons from photosystem I, making the FLV activity for protection from overreduction superfluous or even detrimental for photosynthetic efficiency.
Journal Article
Auxin-mediated developmental control in the moss Physcomitrella patens
2018
Focusing on the model species Physcomitrella patens, we discuss knowledge on auxin-regulated development in mosses. The evidence indicates that auxin regulates similar key processes in mosses and flowering plants
Abstract
The signalling molecule auxin regulates many fundamental aspects of growth and development in plants. We review and discuss what is known about auxin-regulated development in mosses, with special emphasis on the model species Physcomitrella patens. It is well established that mosses and other early diverging plants produce and respond to auxin. By sequencing the P. patens genome, it became clear that it encodes many core proteins important for auxin homeostasis, perception, and signalling, which have also been identified in flowering plants. This suggests that the auxin molecular network was present in the last common ancestor of flowering plants and mosses. Despite fundamental differences in their life cycles, key processes such as organ initiation and outgrowth, branching, tropic responses, as well as cell differentiation, division, and expansion appear to be regulated by auxin in the two lineages. This knowledge paves the way for studies aimed at a better understanding of the origin and evolution of auxin function and how auxin may have contributed to the evolution of land plants.
Journal Article