Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Series TitleSeries Title
-
Reading LevelReading Level
-
YearFrom:-To:
-
More FiltersMore FiltersContent TypeItem TypeIs Full-Text AvailableSubjectCountry Of PublicationPublisherSourceTarget AudienceDonorLanguagePlace of PublicationContributorsLocation
Done
Filters
Reset
59
result(s) for
"Physics Problems, exercises, etc."
Sort by:
Mathematics for Physics
2009,2012
An engagingly-written account of mathematical tools and ideas, this book provides a graduate-level introduction to the mathematics used in research in physics. The first half of the book focuses on the traditional mathematical methods of physics – differential and integral equations, Fourier series and the calculus of variations. The second half contains an introduction to more advanced subjects, including differential geometry, topology and complex variables. The authors' exposition avoids excess rigor whilst explaining subtle but important points often glossed over in more elementary texts. The topics are illustrated at every stage by carefully chosen examples, exercises and problems drawn from realistic physics settings. These make it useful both as a textbook in advanced courses and for self-study. Password-protected solutions to the exercises are available to instructors at www.cambridge.org/9780521854030.
Solid state physics
2015
A must-have textbook for any undergraduate studying solid state physics.
This successful brief course in solid state physics is now in its second edition. The clear and concise introduction not only describes all the basic phenomena and concepts, but also such advanced issues as magnetism and superconductivity. Each section starts with a gentle introduction, covering basic principles, progressing to a more advanced level in order to present a comprehensive overview of the subject. The book is providing qualitative discussions that help undergraduates understand concepts even if they can?t follow all the mathematical detail.
The revised edition has been carefully updated to present an up-to-date account of the essential topics and recent developments in this exciting field of physics. The coverage now includes ground-breaking materials with high relevance for applications in communication and energy, like graphene and topological insulators, as well as transparent conductors.
The text assumes only basic mathematical knowledge on the part of the reader and includes more than 100 discussion questions and some 70 problems, with solutions free to lecturers from the Wiley-VCH website. The author's webpage provides Online Notes on x-ray scattering, elastic constants, the quantum Hall effect, tight binding model, atomic magnetism, and topological insulators.
This new edition includes the following updates and new features:
* Expanded coverage of mechanical properties of solids, including an improved discussion of the yield stress
* Crystal structure, mechanical properties, and band structure of graphene
* The coverage of electronic properties of metals is expanded by a section on the quantum hall effect including exercises. New topics include the tight-binding model and an expanded discussion on Bloch waves.
* With respect to semiconductors, the discussion of solar cells has been extended and improved.
* Revised coverage of magnetism, with additional material on atomic magnetism
* More extensive treatment of finite solids and nanostructures, now including topological insulators
* Recommendations for further reading have been updated and increased.
* New exercises on Hall mobility, light penetrating metals, band structure
Solid state physics : an introduction
2015
Filling a gap in the literature for a brief course in solid state physics, this is a clear and concise introduction that not only describes all the basic phenomena and concepts, but also discusses such advanced issues as magnetism and superconductivity.
Physics Olympiad
2014
This book contains some of the problems and solutions in the past domestic theoretical and experimental competitions in Japan for the International Physics Olympiad. Through the exercises, we aim at introducing the appeal and interest of modern physics to high-school students. In particular, the problems for the second-round of competition are like long journey of physics, beginning with fundamental physics of junior-high-school level, and ending with the forefronts of updated physics and technology.
Computational physics
by
Rubin H. Landau
,
Cristian C. Bordeianu
,
Manuel J. Páez
in
Computer simulation
,
Data processing
,
Mathematical physics
2015
The use of computation and simulation has become an essential part of the scientific process. Being able to transform a theory into an algorithm requires significant theoretical insight, detailed physical and mathematical understanding, and a working level of competency in programming.
This upper-division text provides an unusually broad survey of the topics of modern computational physics from a multidisciplinary, computational science point of view. Its philosophy is rooted in learning by doing (assisted by many model programs), with new scientific materials as well as with the Python programming language. Python has become very popular, particularly for physics education and large scientific projects. It is probably the easiest programming language to learn for beginners, yet is also used for mainstream scientific computing, and has packages for excellent graphics and even symbolic manipulations.
The text is designed for an upper-level undergraduate or beginning graduate course and provides the reader with the essential knowledge to understand computational tools and mathematical methods well enough to be successful. As part of the teaching of using computers to solve scientific problems, the reader is encouraged to work through a sample problem stated at the beginning of each chapter or unit, which involves studying the text, writing, debugging and running programs, visualizing the results, and the expressing in words what has been done and what can be concluded. Then there are exercises and problems at the end of each chapter for the reader to work on their own (with model programs given for that purpose).
Physics of stochastic processes
by
Mahnke, Reinhard
,
Lubashevsky, Ihor
,
Kaupuzs, Jevgenijs
in
Mathematical & Computational Physics
,
Problems, exercises, etc
,
Random measures
2009
Based on lectures given by one of the authors with many years of experience in teaching stochastic processes, this textbook is unique in combining basic mathematical and physical theory with numerous simple and sophisticated examples as well as detailed calculations. In addition, applications from different fields are included so as to strengthen the background learned in the first part of the book. With its exercises at the end of each chapter (and solutions only available to lecturers) this book will benefit students and researchers at different educational levels. Solutions manual available for lecturers on www.wiley-vch.de.
Number-crunching
2011
How do technicians repair broken communications cables at the bottom of the ocean without actually seeing them? What's the likelihood of plucking a needle out of a haystack the size of the Earth? And is it possible to use computers to create a universal library of everything ever written or every photo ever taken? These are just some of the intriguing questions that best-selling popular math writer Paul Nahin tackles inNumber-Crunching. Through brilliant math ideas and entertaining stories, Nahin demonstrates how odd and unusual math problems can be solved by bringing together basic physics ideas and today's powerful computers. Some of the outcomes discussed are so counterintuitive they will leave readers astonished.
Nahin looks at how the art of number-crunching has changed since the advent of computers, and how high-speed technology helps to solve fascinating conundrums such as the three-body, Monte Carlo, leapfrog, and gambler's ruin problems. Along the way, Nahin traverses topics that include algebra, trigonometry, geometry, calculus, number theory, differential equations, Fourier series, electronics, and computers in science fiction. He gives historical background for the problems presented, offers many examples and numerous challenges, supplies MATLAB codes for all the theories discussed, and includes detailed and complete solutions.
Exploring the intimate relationship between mathematics, physics, and the tremendous power of modern computers,Number-Crunchingwill appeal to anyone interested in understanding how these three important fields join forces to solve today's thorniest puzzles.