Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
10,816
result(s) for
"Phytochemicals - pharmacology"
Sort by:
Health Functions and Related Molecular Mechanisms of Tea Components: An Update Review
by
Wei, Xin-Lin
,
Gan, Ren-You
,
Tang, Guo-Yi
in
Amino acids
,
Animals
,
Anti-Inflammatory Agents - pharmacology
2019
Tea is widely consumed all over the world. Generally, tea is divided into six categories: White, green, yellow, oolong, black, and dark teas, based on the fermentation degree. Tea contains abundant phytochemicals, such as polyphenols, pigments, polysaccharides, alkaloids, free amino acids, and saponins. However, the bioavailability of tea phytochemicals is relatively low. Thus, some novel technologies like nanotechnology have been developed to improve the bioavailability of tea bioactive components and consequently enhance the bioactivity. So far, many studies have demonstrated that tea shows various health functions, such as antioxidant, anti-inflammatory, immuno-regulatory, anticancer, cardiovascular-protective, anti-diabetic, anti-obesity, and hepato-protective effects. Moreover, it is also considered that drinking tea is safe to humans, since reports about the severe adverse effects of tea consumption are rare. In order to provide a better understanding of tea and its health potential, this review summarizes and discusses recent literature on the bioactive components, bioavailability, health functions, and safety issues of tea, with special attention paid to the related molecular mechanisms of tea health functions.
Journal Article
Moringa oleifera: An Updated Comprehensive Review of Its Pharmacological Activities, Ethnomedicinal, Phytopharmaceutical Formulation, Clinical, Phytochemical, and Toxicological Aspects
by
Gupta, Madan Mohan
,
Pant, Malvika
,
Ratan, Yashumati
in
Antimicrobial agents
,
Collaboration
,
Ethnomedicine
2023
Moringa oleifera, also known as the “tree of life” or “miracle tree,” is classified as an important herbal plant due to its immense medicinal and non-medicinal benefits. Traditionally, the plant is used to cure wounds, pain, ulcers, liver disease, heart disease, cancer, and inflammation. This review aims to compile an analysis of worldwide research, pharmacological activities, phytochemical, toxicological, and ethnomedicinal updates of Moringa oleifera and also provide insight into its commercial and phytopharmaceutical applications with a motive to help further research. The scientific information on this plant was obtained from various sites and search engines such as Scopus, Pub Med, Science Direct, BMC, Google Scholar, and other scientific databases. Articles available in the English language have only been referred for review. The pharmacological studies confirm the hepatoprotective, cardioprotective, and anti-inflammatory potential of the extracts from the various plant parts. It was found that bioactive constituents are present in every part of the plant. So far, more than one hundred compounds from different parts of Moringa oleifera have been characterized, including alkaloids, flavonoids, anthraquinones, vitamins, glycosides, and terpenes. In addition, novel isolates such as muramoside A&B and niazimin A&B have been identified in the plant and have potent antioxidant, anticancer, antihypertensive, hepatoprotective, and nutritional effects. The traditional and nontraditional use of Moringa, its pharmacological effects and their phytopharmaceutical formulations, clinical studies, toxicity profile, and various other uses are recognized in the present review. However, several traditional uses have yet to be scientifically explored. Therefore, further studies are proposed to explore the mechanistic approach of the plant to identify and isolate active or synergistic compounds behind its therapeutic potential.
Journal Article
Chemical Constituents and Pharmacological Activities of Garlic (Allium sativum L.): A Review
by
Magdy Beshbishy, Amany
,
Elewa, Yaser H. A.
,
Taha, Ayman E.
in
allicin
,
Allium sativum
,
Anesthesia
2020
Medicinal plants have been used from ancient times for human healthcare as in the form of traditional medicines, spices, and other food components. Garlic (Allium sativum L.) is an aromatic herbaceous plant that is consumed worldwide as food and traditional remedy for various diseases. It has been reported to possess several biological properties including anticarcinogenic, antioxidant, antidiabetic, renoprotective, anti-atherosclerotic, antibacterial, antifungal, and antihypertensive activities in traditional medicines. A. sativum is rich in several sulfur-containing phytoconstituents such as alliin, allicin, ajoenes, vinyldithiins, and flavonoids such as quercetin. Extracts and isolated compounds of A. sativum have been evaluated for various biological activities including antibacterial, antiviral, antifungal, antiprotozoal, antioxidant, anti-inflammatory, and anticancer activities among others. This review examines the phytochemical composition, pharmacokinetics, and pharmacological activities of A. sativum extracts as well as its main active constituent, allicin.
Journal Article
Determination of Antioxidants by DPPH Radical Scavenging Activity and Quantitative Phytochemical Analysis of Ficus religiosa
by
Baliyan, Siddartha
,
Pandey, Ramendra Pati
,
Mukherjee, Riya
in
2-diphenyl-1-picrylhydrazyl (DPPH)
,
Antioxidants
,
Biphenyl Compounds - antagonists & inhibitors
2022
The use of F. religiosa might be beneficial in inflammatory illnesses and can be used for a variety of health conditions. In this article, we studied the identification of antioxidants using (DPPH) 2,2-Diphenyl-1-picrylhydrazylradical scavenging activity in Ficus religiosa, as F. religiosa is an important herbal plant, and every part of it has various medicinal properties such as antibacterial properties that can be used by the researchers in the development and design of various new drugs. The 2,2-Diphenyl-1-picrylhydrazyl (DPPH) is a popular, quick, easy, and affordable approach for the measurement of antioxidant properties that includes the use of the free radicals used for assessing the potential of substances to serve as hydrogen providers or free-radical scavengers (FRS). The technique of DPPH testing is associated with the elimination of DPPH, which would be a stabilized free radical. The free-radical DPPH interacts with an odd electron to yield a strong absorbance at 517 nm, i.e., a purple hue. An FRS antioxidant, for example, reacts to DPPH to form DPPHH, which has a lower absorbance than DPPH because of the lower amount of hydrogen. It is radical in comparison to the DPPH-H form, because it causes decolorization, or a yellow hue, as the number of electrons absorbed increases. Decolorization affects the lowering capacity significantly. As soon as the DPPH solutions are combined with the hydrogen atom source, the lower state of diphenylpicrylhydrazine is formed, shedding its violet color. To explain the processes behind the DPPH tests, as well as their applicability to Ficus religiosa (F. religiosa) in the manufacture of metal oxide nanoparticles, in particular MgO, and their influence on antioxidants, a specimen from the test was chosen for further study. According to our findings, F. religiosa has antioxidant qualities and may be useful in the treatment of disorders caused by free radicals.
Journal Article
Oxidative Stress: The Role of Antioxidant Phytochemicals in the Prevention and Treatment of Diseases
by
Mariateresa, Russo
,
Mariateresa, Oliva
,
Giulio, Torello
in
Antioxidants
,
Antioxidants - metabolism
,
Antioxidants - pharmacology
2024
Oxidative stress, characterized by an imbalance favouring oxidants over antioxidants, is a key contributor to the development of various common diseases. Counteracting these oxidants is considered an effective strategy to mitigate the levels of oxidative stress in organisms. Numerous studies have indicated an inverse correlation between the consumption of vegetables and fruits and the risk of chronic diseases, attributing these health benefits to the presence of antioxidant phytochemicals in these foods. Phytochemicals, present in a wide range of foods and medicinal plants, play a pivotal role in preventing and treating chronic diseases induced by oxidative stress by working as antioxidants. These compounds exhibit potent antioxidant, anti-inflammatory, anti-aging, anticancer, and protective properties against cardiovascular diseases, diabetes mellitus, obesity, and neurodegenerative conditions. This comprehensive review delves into the significance of these compounds in averting and managing chronic diseases, elucidating the key sources of these invaluable elements. Additionally, it provides a summary of recent advancements in understanding the health benefits associated with antioxidant phytochemicals.
Journal Article
Pharmacological Update Properties of Aloe Vera and its Major Active Constituents
by
Sánchez, Marta
,
Iglesias, Irene
,
González-Burgos, Elena
in
Aloe - chemistry
,
aloe vera
,
Anti-Infective Agents - chemistry
2020
Aloe vera has been traditionally used to treat skin injuries (burns, cuts, insect bites, and eczemas) and digestive problems because its anti-inflammatory, antimicrobial, and wound healing properties. Research on this medicinal plant has been aimed at validating traditional uses and deepening the mechanism of action, identifying the compounds responsible for these activities. The most investigated active compounds are aloe-emodin, aloin, aloesin, emodin, and acemannan. Likewise, new actions have been investigated for Aloe vera and its active compounds. This review provides an overview of current pharmacological studies (in vitro, in vivo, and clinical trials), written in English during the last six years (2014–2019). In particular, new pharmacological data research has shown that most studies refer to anti-cancer action, skin and digestive protective activity, and antimicrobial properties. Most recent works are in vitro and in vivo. Clinical trials have been conducted just with Aloe vera, but not with isolated compounds; therefore, it would be interesting to study the clinical effect of relevant metabolites in different human conditions and pathologies. The promising results of these studies in basic research encourage a greater number of clinical trials to test the clinical application of Aloe vera and its main compounds, particularly on bone protection, cancer, and diabetes.
Journal Article
Chia Seeds (Salvia Hispanica L.): An Overview—Phytochemical Profile, Isolation Methods, and Application
by
Cör, Darija
,
Knez Hrnčič, Maša
,
Knez, Željko
in
Anti-Infective Agents - analysis
,
Anti-Infective Agents - chemistry
,
Anti-Infective Agents - isolation & purification
2019
Chia (Salvia hispanica L.) is a small seed that comes from an annual herbaceous plant, Salvia hispanica L. In recent years, usage of Chia seeds has tremendously grown due to their high nutritional and medicinal values. Chia was cultivated by Mesopotamian cultures, but then disappeared for centuries until the middle of the 20th century, when it was rediscovered. Chia seeds contain healthy ω-3 fatty acids, polyunsaturated fatty acids, dietary fiber, proteins, vitamins, and some minerals. Besides this, the seeds are an excellent source of polyphenols and antioxidants, such as caffeic acid, rosmarinic acid, myricetin, quercetin, and others. Today, chia has been analyzed in different areas of research. Researches around the world have been investigating the benefits of chia seeds in the medicinal, pharmaceutical, and food industry. Chia oil is today one of the most valuable oils on the market. Different extraction methods have been used to produce the oil. In the present study, an extensive overview of the chemical composition, nutritional properties, and antioxidant and antimicrobial activities, along with extraction methods used to produce chia oil, will be discussed.
Journal Article
Plant Secondary Metabolites Produced in Response to Abiotic Stresses Has Potential Application in Pharmaceutical Product Development
by
Ritmejerytė, Edita
,
Yeshi, Karma
,
Crayn, Darren
in
Abiotic stress
,
Acids
,
Adaptation, Biological
2022
Plant secondary metabolites (PSMs) are vital for human health and constitute the skeletal framework of many pharmaceutical drugs. Indeed, more than 25% of the existing drugs belong to PSMs. One of the continuing challenges for drug discovery and pharmaceutical industries is gaining access to natural products, including medicinal plants. This bottleneck is heightened for endangered species prohibited for large sample collection, even if they show biological hits. While cultivating the pharmaceutically interesting plant species may be a solution, it is not always possible to grow the organism outside its natural habitat. Plants affected by abiotic stress present a potential alternative source for drug discovery. In order to overcome abiotic environmental stressors, plants may mount a defense response by producing a diversity of PSMs to avoid cells and tissue damage. Plants either synthesize new chemicals or increase the concentration (in most instances) of existing chemicals, including the prominent bioactive lead compounds morphine, camptothecin, catharanthine, epicatechin-3-gallate (EGCG), quercetin, resveratrol, and kaempferol. Most PSMs produced under various abiotic stress conditions are plant defense chemicals and are functionally anti-inflammatory and antioxidative. The major PSM groups are terpenoids, followed by alkaloids and phenolic compounds. We have searched the literature on plants affected by abiotic stress (primarily studied in the simulated growth conditions) and their PSMs (including pharmacological activities) from PubMed, Scopus, MEDLINE Ovid, Google Scholar, Databases, and journal websites. We used search keywords: “stress-affected plants,” “plant secondary metabolites, “abiotic stress,” “climatic influence,” “pharmacological activities,” “bioactive compounds,” “drug discovery,” and “medicinal plants” and retrieved published literature between 1973 to 2021. This review provides an overview of variation in bioactive phytochemical production in plants under various abiotic stress and their potential in the biodiscovery of therapeutic drugs. We excluded studies on the effects of biotic stress on PSMs.
Journal Article
The Wonderful Activities of the Genus Mentha: Not Only Antioxidant Properties
by
Tufail, Tabussam
,
Imran, Muhammad
,
Caruso, Gianluca
in
Acids
,
Anti-Bacterial Agents - chemistry
,
Anti-Bacterial Agents - isolation & purification
2021
Medicinal plants and their derived compounds have drawn the attention of researchers due to their considerable impact on human health. Among medicinal plants, mint (Mentha species) exhibits multiple health beneficial properties, such as prevention from cancer development and anti-obesity, antimicrobial, anti-inflammatory, anti-diabetic, and cardioprotective effects, as a result of its antioxidant potential, combined with low toxicity and high efficacy. Mentha species are widely used in savory dishes, food, beverages, and confectionary products. Phytochemicals derived from mint also showed anticancer activity against different types of human cancers such as cervix, lung, breast and many others. Mint essential oils show a great cytotoxicity potential, by modulating MAPK and PI3k/Akt pathways; they also induce apoptosis, suppress invasion and migration potential of cancer cells lines along with cell cycle arrest, upregulation of Bax and p53 genes, modulation of TNF, IL-6, IFN-γ, IL-8, and induction of senescence phenotype. Essential oils from mint have also been found to exert antibacterial activities against Bacillus subtilis, Streptococcus aureus, Pseudomonas aeruginosa, and many others. The current review highlights the antimicrobial role of mint-derived compounds and essential oils with a special emphasis on anticancer activities, clinical data and adverse effects displayed by such versatile plants.
Journal Article
Clove Essential Oil (Syzygium aromaticum L. Myrtaceae): Extraction, Chemical Composition, Food Applications, and Essential Bioactivity for Human Health
by
Castillo-Herrera, Gustavo Adolfo
,
Espinosa-Andrews, Hugo
,
Haro-González, José Nabor
in
Analgesics
,
Anti-Infective Agents
,
Anti-Inflammatory Agents
2021
Clove (Syzygium aromaticum L. Myrtaceae) is an aromatic plant widely cultivated in tropical and subtropical countries, rich in volatile compounds and antioxidants such as eugenol, β-caryophyllene, and α-humulene. Clove essential oil has received considerable interest due to its wide application in the perfume, cosmetic, health, medical, flavoring, and food industries. Clove essential oil has biological activity relevant to human health, including antimicrobial, antioxidant, and insecticidal activity. The impacts of the extraction method (hydrodistillation, steam distillation, ultrasound-assisted extraction, microwave-assisted extraction, cold pressing, and supercritical fluid extraction) on the concentration of the main volatile compounds in clove essential oil and organic clove extracts are shown. Eugenol is the major compound, accounting for at least 50%. The remaining 10–40% consists of eugenyl acetate, β-caryophyllene, and α-humulene. The main biological activities reported are summarized. Furthermore, the main applications in clove essential oil in the food industry are presented. This review presents new biological applications beneficial for human health, such as anti-inflammatory, analgesic, anesthetic, antinociceptive, and anticancer activity. This review aims to describe the effects of different methods of extracting clove essential oil on its chemical composition and food applications and the biological activities of interest to human health.
Journal Article