Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
178 result(s) for "Pinopsida"
Sort by:
Size and function in conifer tracheids and angiosperm vessels
The wide size range of conifer tracheids and angiosperm vessels has important consequences for function. In both conduit types, bigger is better for conducting efficiency. The gain in efficiency with size is maximized by the control of conduit shape, which balances end-wall and lumen resistances. Although vessels are an order of magnitude longer than tracheids of the same diameter, they are not necessarily more efficient because they lack the low end-wall resistance of tracheids with torus-margo pits. Instead, vessels gain conducting efficiency over tracheids by achieving wider maximum diameters. End-walls contributed 56-64% to total xylem resistance in both conduit types, indicating that length limits conducting efficiency. Tracheid dimensions may be more limited by unicellularity and the need to supply strength to homoxylous wood than by the need to protect against cavitation. In contrast, the greater size of the multicellular vessel is facilitated by fibers that strengthen heteroxylous wood. Vessel dimensions may be most limited by the need to restrict intervessel pitting and cavitation by air-seeding. Stressful habitats that promote narrow vessels should favor coexistence of conifers and angiosperms. The evolution of vessels in angiosperm wood may have required early angiosperms to survive a phase of mechanic and hydraulic instability.
Catálogo de las plantas vasculares de Chile
Se presenta un catálogo de las plantas vasculares que crecen en Chile. Está organizado por divisiones, Pteridophyta (Lycopodiopsida y Polypodiopsida), Pinophyta (Gnetopsida y Pinopsida) y Magnoliophyta (Liliopsida y Magnoliopsida), y dentro de cada grupo, las jerarquías taxonómicas (Familia, Género, Especies y taxones infraespecíficos) están ordenados alfabéticamente. Se incluye además un índice alfabético de géneros con indicación de la familia y grupo a que pertenecen. De acuerdo a este catálogo la flora de las plantas vasculares que crecen en Chile, comprende 186 familias, 1121 géneros y 5471 especies, de éstas, 4655 corresponden a especies nativas, de las cuales 2145 son endémicas de Chile y 816 las especies introducidas.
Diversity and Distribution of Mites (ACARI) Revealed by Contamination Survey in Public Genomic Databases
Acari (mites and ticks) are a biodiverse group of microarthropods within the Arachnida. Because of their diminutive size, mites are often overlooked. We hypothesized that mites, like other closely related microorganisms, could also contaminate public genomic database. Here, using a strategy based on DNA barcodes previously reported, we scanned contaminations related to mites (Acari, exclusive of Ixodida) in Genbank WGS/TSA database. In 22,114 assemblies (17,845 animal and 4269 plant projects), 1717 contigs in 681 assemblies (3.1%) were detected as mite contaminations. Additional taxonomic analysis showed the following: (1) most of the contaminants (1445/1717) were from the specimens of Magnoliopsida, Insecta and Pinopsida; (2) the contamination rates were higher in plant or TSA projects; (3) mite distribution among different classes of hosts varied considerably. Additional phylogenetic analysis of these contaminated contigs further revealed complicated mite-host associations. Overall, we conducted a first systemic survey and analysis of mite contaminations in public genomic database, and these DNA barcode related mite contigs will provide a valuable resource of information for understanding the diversity and phylogeny of mites.
New records of coniferous species (Gymnospermae, Pinidae) for the non-native woody flora of Tunisia and North Africa
Ten new taxa of gymnosperms are added to the non-indigenous woody flora of Tunisia, after almost two decades of botanical surveys. Four of them ( , var. , var. , var. ) are also new for the flora of North Africa. is here first reported for the Mediterranean Basin. Three genera ( , and ) are firstly recorded for the non-native vascular flora of Africa whereas two genera ( and ) are reported for the first time only for the woody flora of Tunisia. Brief descriptions together with filed photographs, global distributions and habitats at national scale are provided. Some taxonomic comments on their distinguishable features as well as updated keys are also presented.
Inter-tracheid pitting and the hydraulic efficiency of conifer wood: the role of tracheid allometry and cavitation protection
Plant xylem must balance efficient delivery of water to the canopy against protection from air entry into the conduits via air-seeding. We investigated the relationship between tracheid allometry, end wall pitting, safety from air-seeding, and the hydraulic efficiency of conifer wood in order to better understand the trade-offs between effective transport and protection against air entry. Root and stem wood were sampled from conifers belonging to the Pinaceae, Cupressaceae, Podocarpaceae, and Araucariaceae. Hydraulic resistivity of tracheids decreased with increasing tracheid diameter and width, with 64 ± 4% residing in the end wall pitting regardless of tracheid size or phylogenetic affinity. This end-wall percentage was consistent with a near-optimal scaling between tracheid diameter and length that minimized flow resistance for a given tracheid length. There was no evidence that tracheid size and hydraulic efficiency were constrained by the role of the pits in protecting against cavitation by air-seeding. An increase in pit area resistance with safety from cavitation was observed only for species of the northern hemisphere (Pinaceae and Cupressaceae), but this variable was independent of tracheid size, and the increase in pit resistance did not significantly influence tracheid resistance. In contrast to recent work on angiosperm vessels, protection against air-seeding in conifer tracheids appears to be uncoupled from conduit size and conducting efficiency.
Analysis of circular bordered pit function II. Gymnosperm tracheids with torus-margo pit membranes
A model of xylem conduit function was applied to gymnosperm tracheids with torus-margo pit membranes for comparison with angiosperm vessels. Tracheids from 17 gymnosperm tree species with circular bordered pits and air-seed pressures from 0.8 to 11.8 MPa were analyzed. Tracheids were more reinforced against implosion than vessels, consistent with their double function in transport and support. Tracheid pits were 3.3 to 44 times higher in hydraulic conductivity than vessel pits because of greater membrane conductivity of the torus-margo configuration. Tight scaling between torus and pit size maximized pit conductivity. Higher pit conductivity allowed tracheids to be 1.7-3.4 times shorter than vessels and still achieve 95% of their lumen-limited maximum conductivity. Predicted tracheid lengths were consistent with measured lengths. The torus-margo structure is important for maximizing the conductivity of the inherently length-limited tracheid: replacing the torus-margo membrane with a vessel membrane caused stem tracheid conductivity to drop by 41%. Tracheids were no less hydraulically efficient than vessels if they were long enough to reach their lumen-limiting conductivity. However, this may only be possible for lumen diameters below approximately 60-70 micrometer.
Invariant Scaling Relationships for Interspecific Plant Biomass Production Rates and Body Size
The allometric relationships for plant annualized biomass production (\"growth\") rates, different measures of body size (dry weight and length), and photosynthetic biomass (or pigment concentration) per plant (or cell) are reported for multicellular and unicellular plants representing three algal phyla; aquatic ferns; aquatic and terrestrial herbaceous dicots; and arborescent monocots, dicots, and conifers. Annualized rates of growth G scale as the 3/4-power of body mass M over 20 orders of magnitude of M (i.e., G ∝ M3/4); plant body length L (i.e., cell length or plant height) scales, on average, as the 1/4-power of M over 22 orders of magnitude of M (i.e., L ∝ M1/4); and photosynthetic biomass Mp scales as the 3/4-power of nonphotosynthetic biomass Mn (i.e., Mp ∝ Mn3/4). Because these scaling relationships are indifferent to phylogenetic affiliation and habitat, they have far-reaching ecological and evolutionary implications (e.g., net primary productivity is predicted to be largely insensitive to community species composition or geological age).
Phylogeny of Seed Plants Based on All Three Genomic Compartments: Extant Gymnosperms Are Monophyletic and Gnetales' Closest Relatives Are Conifers
Efforts to resolve Darwin's \"abominable mystery\"--the origin of angiosperms--have led to the conclusion that Gnetales and various fossil groups are sister to angiosperms, forming the \"anthophytes.\" Morphological homologies, however, are difficult to interpret, and molecular data have not provided clear resolution of relationships among major groups of seed plants. We introduce two sequence data sets from slowly evolving mitochondrial genes, cox1 and atpA, which unambiguously reject the anthophyte hypothesis, favoring instead a close relationship between Gnetales and conifers. Parsimony- and likelihood-based analyses of plastid rbcL and nuclear 18S rDNA alone and with cox1 and atpA also strongly support a gnetophyte-conifer grouping. Surprisingly, three of four genes (all but nuclear rDNA) and combined three-genome analyses also suggest or strongly support Gnetales as derived conifers, sister to Pinaceae. Analyses with outgroups screened to avoid long branches consistently identify all gymnosperms as a monophyletic sister group to angiosperms. Combined three- and four-gene rooted analyses resolve the branching order for the remaining major groups--cycads separate from other gymnosperms first, followed by Ginkgo and then (Gnetales + Pinaceae) sister to a monophyletic group with all other conifer families. The molecular phylogeny strongly conflicts with current interpretations of seed plant morphology, and implies that many similarities between gnetophytes and angiosperms, such as \"flower-like\" reproductive structures and double fertilization, were independently derived, whereas other characters could emerge as synapomorphies for an expanded conifer group including Gnetales. An initial angiosperm-gymnosperm split implies a long stem lineage preceding the explosive Mesozoic radiation of flowering plants and suggests that angiosperm origins and homologies should be sought among extinct seed plant groups.
DEFENSIVE RESIN BIOSYNTHESIS IN CONIFERS
Tree killing bark beetles and their vectored fungal pathogens are the most destructive agents of conifer forests worldwide. Conifers defend against attack by the constitutive and inducible production of oleoresin, a complex mixture of mono-, sesqui-, and diterpenoids that accumulates at the wound site to kill invaders and both flush and seal the injury. Although toxic to the bark beetle and fungal pathogen, oleoresin also plays a central role in the chemical ecology of these boring insects, from host selection to pheromone signaling and tritrophic level interactions. The biochemistry of oleoresin terpenoids is reviewed, and the regulation of production of this unusual plant secretion is described in the context of bark beetle infestation dynamics with respect to the function of the turpentine and rosin components. Recent advances in the molecular genetics of terpenoid biosynthesis provide evidence for the evolutionary origins of oleoresin and permit consideration of genetic engineering strategies to improve conifer defenses as a component of modem forest biotechnology. [PUBLICATION ABSTRACT]
relationship between xylem conduit diameter and cavitation caused by freezing
The centrifuge method for measuring the resistance of xylem to cavitation by water stress was modified to also account for any additional cavitation that might occur from a freeze-thaw cycle. A strong correlation was found between cavitation by freezing and mean conduit diameter. On the one extreme, a tracheid-bearing conifer and diffuse-porous angiosperms with small-diameter vessels (mean diameter <30 micrometers) showed no freezing-induced cavitation under modest water stress (xylem pressure = -0.5 MPa), whereas species with larger diameter vessels (mean >40 micrometers) were nearly completely cavitated under the same conditions. Species with intermediate mean diameters (30-40 micrometers) showed partial cavitation by freezing. These results are consistent with a critical diameter of 44 micrometers at or above which cavitation would occur by a freeze-thaw cycle at -0.5 MPa. As expected, vulnerability to cavitation by freezing was correlated with the hydraulic conductivity per stem transverse area. The results confirm and extend previous reports that small-diameter conduits are relatively resistant to cavitation by freezing. It appears that the centrifuge method, modified to include freeze-thaw cycles, may be useful in separating the interactive effects of xylem pressure and freezing on cavitation.