Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Series TitleSeries Title
-
Reading LevelReading Level
-
YearFrom:-To:
-
More FiltersMore FiltersContent TypeItem TypeIs Full-Text AvailableSubjectCountry Of PublicationPublisherSourceTarget AudienceDonorLanguagePlace of PublicationContributorsLocation
Done
Filters
Reset
5,377
result(s) for
"Planetary geology"
Sort by:
Layered subsurface in Utopia Basin of Mars revealed by Zhurong rover radar
2022
Exploring the subsurface structure and stratification of Mars advances our understanding of Martian geology, hydrological evolution and palaeoclimatic changes, and has been a main task for past and continuing Mars exploration missions
1
–
10
. Utopia Planitia, the smooth plains of volcanic and sedimentary strata that infilled the Utopia impact crater, has been a prime target for such exploration as it is inferred to have hosted an ancient ocean on Mars
11
–
13
. However, 45 years have passed since Viking-2 provided ground-based detection results. Here we report an in situ ground-penetrating radar survey of Martian subsurface structure in a southern marginal area of Utopia Planitia conducted by the Zhurong rover of the Tianwen-1 mission. A detailed subsurface image profile is constructed along the roughly 1,171 m traverse of the rover, showing an approximately 70-m-thick, multi-layered structure below a less than 10-m-thick regolith. Although alternative models deserve further scrutiny, the new radar image suggests the occurrence of episodic hydraulic flooding sedimentation that is interpreted to represent the basin infilling of Utopia Planitia during the Late Hesperian to Amazonian. While no direct evidence for the existence of liquid water was found within the radar detection depth range, we cannot rule out the presence of saline ice in the subsurface of the landing area.
A ground-penetrating radar survey of Martian subsurface structure in a southern marginal area of Utopia Planitia constructed a detailed subsurface image profile showing a roughly 70-m-thick, multi-layered structure below regolith.
Journal Article
Discovering the cosmos with small spacecraft : the American Explorer Program
2018
Explorer was the original American space program and Explorer 1 its first satellite, launched in 1958. It introduces the launchers (Juno, Thor, etc.), the launch centers, the ground centers and key personalities like James Van Allen who helped develop and run the spacecraft's exciting programs.
Geologic Constraints on Early Mars Climate
by
Kite, Edwin S.
in
Aerospace Technology and Astronautics
,
Astrophysics and Astroparticles
,
Atmospheric models
2019
Early Mars climate research has well-defined goals (MEPAG
2018
). Achieving these goals requires geologists and climate modelers to coordinate. Coordination is easier if results are expressed in terms of well-defined parameters. Key parameters include the following quantitative geologic constraints. (1) Cumulative post-3.4 Ga precipitation-sourced water runoff in some places exceeded
1
km
column. (2) There is no single Early Mars climate problem: the traces of ≥2 river-forming periods are seen. Relative to rivers that formed earlier in Mars history, rivers that formed later in Mars history are found preferentially at lower elevations, and show a stronger dependence on latitude. (3) The duration of the longest individual river-forming climate was
>
(
10
2
–
10
3
)
yr
, based on paleolake hydrology. (4) Peak runoff production was
>
0.1
mm
/
hr
. However, (5) peak runoff production was intermittent, sustained (in a given catchment) for only <10% of the duration of river-forming climates. (6) The cumulative number of wet years during the valley-network-forming period was
>
10
5
yr
. (7) Post-Noachian light-toned, layered sedimentary rocks took
>
10
7
yr
to accumulate. However, (8) an “average” place on Mars saw water for
<
10
7
yr
after the Noachian, suggesting that the river-forming climates were interspersed with long globally-dry intervals. (9) Geologic proxies for Early Mars atmospheric pressure indicate pressure was not less than 0.012 bar but not much more than 1 bar. A truth table of these geologic constraints versus currently published climate models shows that the late persistence of river-forming climates, combined with the long duration of individual lake-forming climates, is a challenge for most models.
Journal Article
A coupled model of episodic warming, oxidation and geochemical transitions on early Mars
2021
Reconciling the geology of Mars with models of atmospheric evolution remains a major challenge. Martian geology is characterized by past evidence for episodic surface liquid water, and geochemistry indicating a slow and intermittent transition from wetter to drier and more oxidizing surface conditions. Here we present a model that incorporates randomized injection of reducing greenhouse gases and oxidation due to hydrogen escape to investigate the conditions responsible for these diverse observations. We find that Mars could have transitioned repeatedly from reducing (hydrogen-rich) to oxidizing (oxygen-rich) atmospheric conditions in its early history. Our model predicts a generally cold early Mars, with mean annual temperatures below 240 K. If peak reducing-gas release rates and background carbon dioxide levels are high enough, it nonetheless exhibits episodic warm intervals sufficient to degrade crater walls, form valley networks and create other fluvial/lacustrine features. Our model also predicts transient build-up of atmospheric oxygen, which can help explain the occurrence of oxidized mineral species such as manganese oxides at Gale Crater. We suggest that the apparent Noachian–Hesperian transition from phyllosilicate deposition to sulfate deposition around 3.5 billion years ago can be explained as a combined outcome of increasing planetary oxidation, decreasing groundwater availability and a waning bolide impactor flux, which dramatically slowed the remobilization and thermochemical destruction of surface sulfates. Ultimately, rapid and repeated variations in Mars’s early climate and surface chemistry would have presented both challenges and opportunities for any emergent microbial life.
Mars’s early climate and surface chemistry varied between a generally cold, oxidizing environment and warmer, more reducing conditions, according to a model of atmospheric evolution driven by stochastic, random injection of greenhouse gases.
Journal Article
Impact shock origin of diamonds in ureilite meteorites
by
Domeneghetti, M. Chiara
,
Dalconi, M. Chiara
,
Barbaro, Anna
in
Coexistence
,
Cohenite
,
Crystals
2020
The origin of diamonds in ureilite meteorites is a timely topic in planetary geology as recent studies have proposed their formation at static pressures >20 GPa in a large planetary body, like diamonds formed deep within Earth’s mantle. We investigated fragments of three diamond-bearing ureilites (two from the Almahata Sitta polymict ureilite and one from the NWA 7983 main group ureilite). In NWA 7983 we found an intimate association of large monocrystalline diamonds (up to at least 100 μm), nanodiamonds, nanographite, and nanometric grains of metallic iron, cohenite, troilite, and likely schreibersite. The diamonds show a striking texture pseudomorphing inferred original graphite laths. The silicates in NWA 7983 record a high degree of shock metamorphism. The coexistence of large monocrystalline diamonds and nanodiamonds in a highly shocked ureilite can be explained by catalyzed transformation from graphite during an impact shock event characterized by peak pressures possibly as low as 15 GPa for relatively long duration (on the order of 4 to 5 s). The formation of “large” (as opposed to nano) diamond crystals could have been enhanced by the catalytic effect of metallic Fe-Ni-C liquid coexisting with graphite during this shock event. We found no evidence that formation of micrometer(s)-sized diamonds or associated Fe-S-P phases in ureilites require high static pressures and long growth times, which makes it unlikely that any of the diamonds in ureilites formed in bodies as large as Mars or Mercury.
Journal Article
Complex crater formation by low energy impactors
by
Oblesrczuk, Thiago
,
Schoenmaker, Jeroen
,
Tardini Paulino, Rodrigo
in
Algorithms
,
Civil engineering
,
Craters
2025
We investigate the formation of complex craters in low-energy laboratory impacts using layered granular beds and a range of impactors, including solid, liquid, and granular types. Shallow granular targets change how the impact energy is dissipated, resulting in power-law scalings for the crater diameter that depart from those observed in homogeneous targets. An adaptation of the well-known Schmidt-Holsapple scaling was made to explain the impacts made from the liquid droplets. Furthermore, we show that the layered target promotes the formation of complex crater features, including flat floors and central peaks, even at low impact energies, through an essentially distinct process when compared to high energy impacts. In particular, granular impactors consistently produce ring-shaped craters, a result explained by a mechanism analogous to air entrapment in droplet impacts. This ring-like morphology was also successfully reproduced in simulations using a modelling approach developed in this work. These findings suggest that layered targets can reproduce features typical of planetary-scale complex craters at the laboratory scale, opening new avenues for small-scale experimental studies of impact dynamics with potential applications in planetary geology and civil engineering.
Journal Article
Mission Overview and Scientific Contributions from the Mars Science Laboratory Curiosity Rover After Eight Years of Surface Operations
by
Vasavada, Ashwin R.
in
Aerospace Technology and Astronautics
,
Astrophysics and Astroparticles
,
Bedforms
2022
NASA’s Mars Science Laboratory mission, with its Curiosity rover, has been exploring Gale crater (5.4° S, 137.8° E) since 2012 with the goal of assessing the potential of Mars to support life. The mission has compiled compelling evidence that the crater basin accumulated sediment transported by marginal rivers into lakes that likely persisted for millions of years approximately 3.6 Ga ago in the early Hesperian. Geochemical and mineralogical assessments indicate that environmental conditions within this timeframe would have been suitable for sustaining life, if it ever were present. Fluids simultaneously circulated in the subsurface and likely existed through the dry phases of lake bed exposure and aeolian deposition, conceivably creating a continuously habitable subsurface environment that persisted to less than 3 Ga in the early Amazonian. A diversity of organic molecules has been preserved, though degraded, with evidence for more complex precursors. Solid samples show highly variable isotopic abundances of sulfur, chlorine, and carbon. In situ studies of modern wind-driven sediment transport and multiple large and active aeolian deposits have led to advances in understanding bedform development and the initiation of saltation. Investigation of the modern atmosphere and environment has improved constraints on the timing and magnitude of atmospheric loss, revealed the presence of methane and the crater’s influence on local meteorology, and provided measurements of high-energy radiation at Mars’ surface in preparation for future crewed missions. Rover systems and science instruments remain capable of addressing all key scientific objectives. Emphases on advance planning, flexibility, operations support work, and team culture have allowed the mission team to maintain a high level of productivity in spite of declining rover power and funding.
Journal Article
Soil Properties and Plant Growth Response to Litter in a Prolonged Enclosed Grassland of Loess Plateau, China
2019
The enclosure and ungrazing practices for grassland management result in accumulation of plant litter on soil surface thus affecting the available soil water and nutrients for plant production. We experimentally investigated the effects of litter on soil properties and plant growth in a prolonged enclosure grassland of Loess Plateau, China. Three different litter manipulations were conducted including removal of all litter, an untreated
in-situ
control with original litter levels, and a double litter treatment. Litter treatment experiments demonstrated that plant litter affected the superficial soil water. Soil water content in plots with
in-situ
or double litter is generally higher than that with litter removal. The depletion of soil water up to five days post rainfall is fastest in litter removal plots for the top soil, but no evident difference for the deep ones. Different litter treatments have no significant impact on soil total carbon, nitrogen as well as carbon/nitrogen ratio for consecutive two years experiments. Both above- and below-ground biomasses in plots of litter removal were less than those in the plots of
in-situ
and double litter treatment. Litter affects plant production mainly through the mechanical barrier regulating root zone soil moisture. Therefore, prolonged litter manipulation experiments are desirable to understand the long-term response of plant growth on litter from nutrient aspect.
Journal Article
An interval of high salinity in ancient Gale crater lake on Mars
2019
Precipitated minerals, including salts, are primary tracers of atmospheric conditions and water chemistry in lake basins. Ongoing in situ exploration by the Curiosity rover of Hesperian (around 3.3–3.7 Gyr old) sedimentary rocks within Gale crater on Mars has revealed clay-bearing fluvio-lacustrine deposits with sporadic occurrences of sulfate minerals, primarily as late-stage diagenetic veins and concretions. Here we report bulk enrichments, disseminated in the bedrock, of 30–50 wt% calcium sulfate intermittently over about 150 m of stratigraphy, and of 26–36 wt% hydrated magnesium sulfate within a thinner section of strata. We use geochemical analysis, primarily from the ChemCam laser-induced breakdown spectrometer, combined with results from other rover instruments, to characterize the enrichments and their lithology. The deposits are consistent with early diagenetic, pre-compaction salt precipitation from brines concentrated by evaporation, including magnesium sulfate-rich brines from extreme evaporative concentration. This saline interval represents a substantial hydrological perturbation of the lake basin, which may reflect variations in Mars’ obliquity and orbital parameters. Our findings support stepwise changes in Martian climate during the Hesperian, leading to more arid and sulfate-dominated environments as previously inferred from orbital observations.
Journal Article