Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
762
result(s) for
"Plant Extracts - pharmacokinetics"
Sort by:
Chemical Constituents and Pharmacological Activities of Garlic (Allium sativum L.): A Review
by
Magdy Beshbishy, Amany
,
Elewa, Yaser H. A.
,
Taha, Ayman E.
in
allicin
,
Allium sativum
,
Anesthesia
2020
Medicinal plants have been used from ancient times for human healthcare as in the form of traditional medicines, spices, and other food components. Garlic (Allium sativum L.) is an aromatic herbaceous plant that is consumed worldwide as food and traditional remedy for various diseases. It has been reported to possess several biological properties including anticarcinogenic, antioxidant, antidiabetic, renoprotective, anti-atherosclerotic, antibacterial, antifungal, and antihypertensive activities in traditional medicines. A. sativum is rich in several sulfur-containing phytoconstituents such as alliin, allicin, ajoenes, vinyldithiins, and flavonoids such as quercetin. Extracts and isolated compounds of A. sativum have been evaluated for various biological activities including antibacterial, antiviral, antifungal, antiprotozoal, antioxidant, anti-inflammatory, and anticancer activities among others. This review examines the phytochemical composition, pharmacokinetics, and pharmacological activities of A. sativum extracts as well as its main active constituent, allicin.
Journal Article
An Update on Pharmacological Potential of Boswellic Acids against Chronic Diseases
by
Parama, Dey
,
Devi, Amrita Khwairakpam
,
Padmavathi, Ganesan
in
Acids
,
Animals
,
Anti-Inflammatory Agents, Non-Steroidal - administration & dosage
2019
Natural compounds, in recent years, have attracted significant attention for their use in the prevention and treatment of diverse chronic diseases as they are devoid of major toxicities. Boswellic acid (BA), a series of pentacyclic triterpene molecules, is isolated from the gum resin of Boswellia serrata and Boswellia carteri. It proved to be one such agent that has exhibited efficacy against various chronic diseases like arthritis, diabetes, asthma, cancer, inflammatory bowel disease, Parkinson’s disease, Alzheimer’s, etc. The molecular targets attributed to its wide range of biological activities include transcription factors, kinases, enzymes, receptors, growth factors, etc. The present review is an attempt to demonstrate the diverse pharmacological uses of BA, along with its underlying molecular mechanism of action against different ailments. Further, this review also discusses the roadblocks associated with the pharmacokinetics and bioavailability of this promising compound and strategies to overcome those limitations for developing it as an effective drug for the clinical management of chronic diseases.
Journal Article
Traditional Uses, Bioactive Chemical Constituents, and Pharmacological and Toxicological Activities of Glycyrrhiza glabra L. (Fabaceae)
by
El-Saber Batiha, Gaber
,
Magdy Beshbishy, Amany
,
M. Abdel-Daim, Mohamed
in
Animals
,
Anti-Infective Agents - adverse effects
,
Anti-Infective Agents - chemistry
2020
Traditional herbal remedies have been attracting attention as prospective alternative resources of therapy for diverse diseases across many nations. In recent decades, medicinal plants have been gaining wider acceptance due to the perception that these plants, as natural products, have fewer side effects and improved efficacy compared to their synthetic counterparts. Glycyrrhiza glabra L. (Licorice) is a small perennial herb that has been traditionally used to treat many diseases, such as respiratory disorders, hyperdipsia, epilepsy, fever, sexual debility, paralysis, stomach ulcers, rheumatism, skin diseases, hemorrhagic diseases, and jaundice. Moreover, chemical analysis of the G. glabra extracts revealed the presence of several organic acids, liquirtin, rhamnoliquirilin, liquiritigenin, prenyllicoflavone A, glucoliquiritin apioside, 1-metho-xyphaseolin, shinpterocarpin, shinflavanone, licopyranocoumarin, glisoflavone, licoarylcoumarin, glycyrrhizin, isoangustone A, semilicoisoflavone B, licoriphenone, and 1-methoxyficifolinol, kanzonol R and several volatile components. Pharmacological activities of G. glabra have been evaluated against various microorganisms and parasites, including pathogenic bacteria, viruses, and Plasmodium falciparum, and completely eradicated P. yoelii parasites. Additionally, it shows antioxidant, antifungal, anticarcinogenic, anti-inflammatory, and cytotoxic activities. The current review examined the phytochemical composition, pharmacological activities, pharmacokinetics, and toxic activities of G. glabra extracts as well as its phytoconstituents.
Journal Article
Influence of In Vitro Digestion on Composition, Bioaccessibility and Antioxidant Activity of Food Polyphenols—A Non-Systematic Review
by
Matwijczuk, Arkadiusz
,
Combrzyński, Maciej
,
Wojtunik-Kulesza, Karolina
in
active ingredients
,
antioxidant activity
,
antioxidants
2020
There is increased interest in following a healthy lifestyle and consuming a substantial portion of secondary plant metabolites, such as polyphenols, due to their benefits for the human body. Food products enriched with various forms of fruits and vegetables are sources of pro-health components. Nevertheless, in many cases, the level of their activities is changed in in vivo conditions. The changes are strictly connected with processes in the digestive system that transfigure the structure of the active compounds and simultaneously keep or modify their biological activities. Much attention has focused on their bioavailability, a prerequisite for further physiological functions. As human studies are time consuming, costly and restricted by ethical concerns, in vitro models for investigating the effects of digestion on these compounds have been developed to predict their release from the food matrix, as well as their bioaccessibility. Most typically, models simulate digestion in the oral cavity, the stomach, the small intestine and, occasionally, the large intestine. The presented review aims to discuss the impact of in vitro digestion on the composition, bioaccessibility and antioxidant activity of food polyphenols. Additionally, we consider the influence of pH on antioxidant changes in the aforementioned substances.
Journal Article
Bioavailability of Tea Catechins and Its Improvement
by
Zheng, Xin-Qiang
,
Ye, Jian-Hui
,
Lu, Jian-Liang
in
Animals
,
bioavailability
,
Biological Availability
2018
Many in vitro studies have shown that tea catechins had vevarious health beneficial effects. However, inconsistent results between in vitro and in vivo studies or between laboratory tests and epidemical studies are observed. Low bioavailability of tea catechins was an important factor leading to these inconsistencies. Research advances in bioavailability studies involving absorption and metabolic biotransformation of tea catechins were reviewed in the present paper. Related techniques for improving their bioavailability such as nanostructure-based drug delivery system, molecular modification, and co-administration of catechins with other bioactives were also discussed.
Journal Article
The anti-inflammatory activity of licorice, a widely used Chinese herb
2017
Context: Increasing incidence and impact of inflammatory diseases have encouraged the search of new pharmacological strategies to face them. Licorice has been used to treat inflammatory diseases since ancient times in China.Objective: To summarize the current knowledge on anti-inflammatory properties and mechanisms of compounds isolated from licorice, to introduce the traditional use, modern clinical trials and officially approved drugs, to evaluate the safety and to obtain new insights for further research of licorice.Methods: PubMed, Web of Science, Science Direct and ResearchGate were information sources for the search terms ‘licorice’, ‘licorice metabolites’, ‘anti-inflammatory’, ‘triterpenoids’, ‘flavonoids’ and their combinations, mainly from year 2010 to 2016 without language restriction. Studies were selected from Science Citation Index journals, in vitro studies with Jadad score less than 2 points and in vivo and clinical studies with experimental flaws were excluded.Results: Two hundred and ninety-five papers were searched and 93 papers were reviewed. Licorice extract, 3 triterpenes and 13 flavonoids exhibit evident anti-inflammatory properties mainly by decreasing TNF, MMPs, PGE2 and free radicals, which also explained its traditional applications in stimulating digestive system functions, eliminating phlegm, relieving coughing, nourishing qi and alleviating pain in TCM. Five hundred and fifty-four drugs containing licorice have been approved by CFDA. The side effect may due to the cortical hormone like action.Conclusion: Licorice and its natural compounds have demonstrated anti-inflammatory activities. More pharmacokinetic studies using different models with different dosages should be carried out, and the maximum tolerated dose is also critical for clinical use of licorice extract and purified compounds.
Journal Article
A Systematic Review of Phytochemistry, Pharmacology and Pharmacokinetics on Astragali Radix: Implications for Astragali Radix as a Personalized Medicine
2019
Astragali radix (AR) is one of the most widely used traditional Chinese herbal medicines. Modern pharmacological studies and clinical practices indicate that AR possesses various biological functions, including potent immunomodulation, antioxidant, anti-inflammation and antitumor activities. To date, more than 200 chemical constituents have been isolated and identified from AR. Among them, isoflavonoids, saponins and polysaccharides are the three main types of beneficial compounds responsible for its pharmacological activities and therapeutic efficacy. After ingestion of AR, the metabolism and biotransformation of the bioactive compounds were extensive in vivo. The isoflavonoids and saponins and their metabolites are the major type of constituents absorbed in plasma. The bioavailability barrier (BB), which is mainly composed of efflux transporters and conjugating enzymes, is expected to have a significant impact on the bioavailability of AR. This review summarizes studies on the phytochemistry, pharmacology and pharmacokinetics on AR. Additionally, the use of AR as a personalized medicine based on the BB is also discussed, which may provide beneficial information to achieve a better and more accurate therapeutic response of AR in clinical practice.
Journal Article
A Review on the Phytochemistry, Pharmacology, Pharmacokinetics and Toxicology of Geniposide, a Natural Product
2017
Iridoid glycosides are natural products occurring widely in many herbal plants. Geniposide (C17H24O10) is a well-known one, present in nearly 40 species belonging to various families, especially the Rubiaceae. Along with this herbal component, dozens of its natural derivatives have also been isolated and characterized by researchers. Furthermore, a large body of pharmacological evidence has proved the various biological activities of geniposide, such as anti-inflammatory, anti-oxidative, anti-diabetic, neuroprotective, hepatoprotective, cholagogic effects and so on. However, there have been some research articles on its toxicity in recent years. Therefore, this review paper aims to provide the researchers with a comprehensive profile of geniposide on its phytochemistry, pharmacology, pharmacokinetics and toxicology in order to highlight some present issues and future perspectives as well as to help us develop and utilize this iridoid glycoside more efficiently and safely.
Journal Article
Andrographolide, an Anti-Inflammatory Multitarget Drug: All Roads Lead to Cellular Metabolism
by
Alarcón, Pablo
,
Hancke, Juan
,
Manosalva, Carolina
in
andrographolide
,
Animals
,
anti-inflammatory
2020
Andrographolide is a labdane diterpene and the main active ingredient isolated from the herb Andrographis paniculata. Andrographolide possesses diverse biological effects including anti-inflammatory, antioxidant, and antineoplastic properties. Clinical studies have demonstrated that andrographolide could be useful in therapy for a wide range of diseases such as osteoarthritis, upper respiratory diseases, and multiple sclerosis. Several targets are described for andrographolide, including the interference of transcription factors NF-κB, AP-1, and HIF-1 and signaling pathways such as PI3K/Akt, MAPK, and JAK/STAT. In addition, an increase in the Nrf2 (nuclear factor erythroid 2–related factor 2) signaling pathway also supports its antioxidant and anti-inflammatory properties. However, this scenario could be more complex since recent evidence suggests that andrographolide targets can modulate glucose metabolism. The metabolic effect of andrographolide might be the key to explaining the diverse therapeutic effects described in preclinical and clinical studies. This review discusses some of the most recent evidence about the anti-inflammatory and metabolic effects of andrographolide.
Journal Article
Fritillariae Thunbergii Bulbus: Traditional Uses, Phytochemistry, Pharmacodynamics, Pharmacokinetics and Toxicity
by
Yang, Angela Wei Hong
,
Hung, Andrew
,
Li, Mingdi
in
Animals
,
Antioxidants
,
Asteraceae - chemistry
2019
Fritillariae Thunbergii Bulbus (FTB) has been widely used as an antitussive herb for thousands of years in China. However, FTB’s traditional uses, chemical compounds and pharmacological activities have not been systematically reviewed. This study aimed to review its traditional uses, phytochemistry, pharmacodynamics, pharmacokinetics and toxicity. We searched the Encyclopedia of Traditional Chinese Medicine to explore the historical records which indicate that it acts to clear heat, resolve phlegm, relieve cough, remove toxicity and disperse abscesses and nodules. We searched 11 databases to identify potential phytochemical or pharmacological studies. Characteristics of its chemical constituents, pharmacological effects, pharmacokinetic and toxicity were descriptively summarized. A total of 9706 studies were identified and 83 of them were included. As a result, 134 chemical constituents were identified, including 26 alkaloids, 29 compounds found in essential oils, 13 diterpenoids, two carbohydrates, two sterols, 18 amino acids, six nucleosides, four nucleobases, four fatty acids, three lignans, and 27 elements. Thirteen pharmacological effects of FTB were identified, including anti-cancer, tracheobronchial relaxation, antitussive, expectorant, anti-muscarinic, anti-inflammation, anti-thyroid, regulation of blood rheology, antiulcer, anti-diarrhea, pain suppression, antioxidation and neuroprotection. These pharmacological activities may be mainly attributed to the alkaloids in FTB. Further phytochemical, pharmacological and network pharmacological studies are recommended.
Journal Article