Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
686
result(s) for
"Plant Lectins - analysis"
Sort by:
Platelet desialylation is a novel mechanism and a therapeutic target in thrombocytopenia during sepsis: an open-label, multicenter, randomized controlled trial
2017
Background
Studies in murine models suggested that platelet desialylation was an important mechanism of thrombocytopenia during sepsis.
Methods
First, we performed a prospective, multicenter, observational study that enrolled septic patients with or without thrombocytopenia to determine the association between platelet desialylation and thrombocytopenia in patients with sepsis, severe sepsis, and septic shock. Gender- and age-matched healthy adults were selected as normal controls in analysis of the platelet desialylation levels (study I). Next, we conducted an open-label randomized controlled trial (RCT) in which the patients who had severe sepsis with thrombocytopenia (platelet counts ≤50 × 10
9
/L) were randomly assigned to receive antimicrobial therapy alone (control group) or antimicrobial therapy plus oseltamivir (oseltamivir group) in a 1:1 ratio (study II). The primary outcomes were platelet desialylation level at study entry, overall platelet response rate within 14 days post-randomization, and all-cause mortality within 28 days post-randomization. Secondary outcomes included platelet recovery time, the occurrence of bleeding events, and the amount of platelets transfused within 14 days post-randomization.
Results
The platelet desialylation levels increased significantly in the 127 septic patients with thrombocytopenia compared to the 134 patients without thrombocytopenia. A platelet response was achieved in 45 of the 54 patients in the oseltamivir group (83.3%) compared with 34 of the 52 patients in the control group (65.4%;
P
= 0.045). The median platelet recovery time was 5 days (interquartile range 4–6) in the oseltamivir group compared with 7 days (interquartile range 5–10) in the control group (
P
= 0.003). The amount of platelets transfused decreased significantly in the oseltamivir group compared to the control group (
P
= 0.044). There was no difference in the overall 28-day mortality regardless of whether oseltamivir was used. The Sequential Organ Failure Assessment score and platelet recovery time were independent indicators of oseltamivir therapy. The main reason for all of the mortalities was multiple-organ failure.
Conclusions
Thrombocytopenia was associated with increased platelet desialylation in septic patients. The addition of oseltamivir could significantly increase the platelet response rate, shorten platelet recovery time, and reduce platelet transfusion.
Trial registration
Chinese Clinical Trial Registry,
ChiCTR-IPR-16008542
.
Journal Article
Efficacy of silk fibroin biomaterial vehicle for in vivo mucosal delivery of Griffithsin and protection against HIV and SHIV infection ex vivo
by
Dandekar, Satya
,
Ziprin, Paul
,
Crakes, Katti R
in
Acquired immune deficiency syndrome
,
AIDS
,
Animals
2020
Introduction The majority of new HIV infections occur through mucosal transmission. The availability of readily applicable and accessible platforms for anti‐retroviral (ARV) delivery is critical for the prevention of HIV acquisition through sexual transmission in both women and men. There is a compelling need for developing new topical delivery systems that have advantages over the pills, gels and rings, which currently fail to guarantee protection against mucosal viral transmission in vulnerable populations due to lack of user compliance. The silk fibroin (SF) platform offers another option that may be better suited to individual circumstances and preferences to increase efficacy through user compliance. The objective of this study was to test safety and efficacy of SF for anti‐HIV drug delivery to mucosal sites and for viral prevention. Methods We formulated a potent HIV inhibitor Griffithsin (Grft) in a mucoadhesive silk fibroin (SF) drug delivery platform and tested the application in a non‐human primate model in vivo and a pre‐clinical human cervical and colorectal tissue explant model. Both vaginal and rectal compartments were assessed in rhesus macaques (Mucaca mulatta) that received SF (n = 4), no SF (n = 7) and SF‐Grft (n = 11). In this study, we evaluated the composition of local microbiota, inflammatory cytokine production, histopathological changes in the vaginal and rectal compartments and mucosal protection after ex vivo SHIV challenge. Results Effective Grft release and retention in mucosal tissues from the SF‐Grft platform resulted in protection against HIV in human cervical and colorectal tissue as well as against SHIV challenge in both rhesus macaque vaginal and rectal tissues. Mucoadhesion of SF‐Grft inserts did not cause any inflammatory responses or changes in local microbiota. Conclusions We demonstrated that in vivo delivery of SF‐Grft in rhesus macaques fully protects against SHIV challenge ex vivo after two hours of application and is safe to use in both the vaginal and rectal compartments. Our study provides support for the development of silk fibroin as a highly promising, user‐friendly HIV prevention modality to address the global disparity in HIV infection.
Journal Article
Characterization of Ricin and R. communis Agglutinin Reference Materials
by
Rapinoja, Marja-Leena
,
Zeleny, Reinhard
,
Söderström, Martin
in
Amino Acid Sequence
,
Animals
,
Antibodies - immunology
2015
Ricinus communis intoxications have been known for centuries and were attributed to the toxic protein ricin. Due to its toxicity, availability, ease of preparation, and the lack of medical countermeasures, ricin attracted interest as a potential biological warfare agent. While different technologies for ricin analysis have been established, hardly any universally agreed-upon “gold standards” are available. Expert laboratories currently use differently purified in-house materials, making any comparison of accuracy and sensitivity of different methods nearly impossible. Technically challenging is the discrimination of ricin from R. communis agglutinin (RCA120), a less toxic but highly homologous protein also contained in R. communis. Here, we established both highly pure ricin and RCA120 reference materials which were extensively characterized by gel electrophoresis, liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI MS/MS), and matrix-assisted laser desorption ionization–time of flight approaches as well as immunological and functional techniques. Purity reached >97% for ricin and >99% for RCA120. Different isoforms of ricin and RCA120 were identified unambiguously and distinguished by LC-ESI MS/MS. In terms of function, a real-time cytotoxicity assay showed that ricin is approximately 300-fold more toxic than RCA120. The highly pure ricin and RCA120 reference materials were used to conduct an international proficiency test.
Journal Article
Inducible gene targeting in the neonatal vasculature and analysis of retinal angiogenesis in mice
by
Benedito, Rui
,
Pitulescu, Mara E
,
Schmidt, Inga
in
631/136/16
,
631/1647/1513/1967
,
631/1647/664
2010
The retina is a powerful experimental system for the analysis of angiogenic blood vessel growth in the postnatal organisms. The three-dimensional architecture of the vessel network and processes as diverse as endothelial cell (EC) proliferation, sprouting, perivascular cell recruitment, vessel remodeling or maturation can be investigated at high resolution. The characterization of physiological and pathological angiogenic processes in mice has been greatly facilitated by inducible and cell type–specific loss-of-function and gain-of-function genetics. In this paper, we provide a detailed protocol for tamoxifen-inducible gene deletion in neonatal mice, as well as for retina dissection, whole-mount immunostaining and the quantitation of EC sprouting and proliferation. These methods have been optimized by our laboratory and yield reliable results. The entire protocol takes ~10 d to complete.
Journal Article
Lectin microarray technology identifies specific lectins related to lymph node metastasis of advanced gastric cancer
by
Katada, Natsuya
,
Hirabayashi, Jun
,
Ikehata, Yuzuru
in
Abdominal Surgery
,
Aged
,
Cancer Research
2016
Background
Although various molecular profiling technologies have the potential to predict specific tumor phenotypes, the comprehensive profiling of lectin-bound glycans in human cancer tissues has not yet been achieved.
Methods
We examined 242 advanced gastric cancer (AGC) patients without or with lymph node metastasis—N0 (
n
= 62) or N+ (
n
= 180)—by lectin microarray, and identified the specific lectins highly associated with AGC phenotypes.
Results
In seven gastric cancer cell lines, in contrast to expressed-in-cancer lectins, not-expressed-in-cancer (NEC) lectins were tentatively designated by lectin microarray. Binding signals of the specific lectins were robustly reduced in AGC patients with N+ status as compared with those with N0 status. The receiver operating characteristic curve determined the optimal cutoff value to differentiate N0 status from N+ status, and subsequent profiling of NEC lectins identified
Vicia villosa
agglutinin (VVA) association with the significant other lectins involved in lymph node metastasis. VVA reaction was clearly found on cancer cells, suggesting that it may result from carcinoma–stroma interaction in primary AGC, because VVA is an NEC lectin. Most intriguingly, VVA reaction was remarkably attenuated in the tumor cells of the metastatic lymph nodes, even if it was recognized in primary AGC. In AGC, histological type was strongly associated with soybean agglutinin and
Bauhinia purpurea
lectin, whereas p53 mutation was the best correlated with
Griffonia simplicifolia
lectin II.
Conclusions
Lectin microarrays can be used to very accurately quantify the reaction of glycans with tumor tissues, and such profiles may represent the specific phenotypes, including N+ status, histological type, or p53 mutation of AGC.
Journal Article
Recommended Mass Spectrometry-Based Strategies to Identify Ricin-Containing Samples
by
Astot, Crister
,
Kalb, Suzanne
,
Fredriksson, Sten-Åke
in
Adenine - chemistry
,
Amino Acid Sequence
,
mass spectrometry
2015
Ricin is a protein toxin produced by the castor bean plant (Ricinus communis) together with a related protein known as R. communis agglutinin (RCA120). Mass spectrometric (MS) assays have the capacity to unambiguously identify ricin and to detect ricin’s activity in samples with complex matrices. These qualitative and quantitative assays enable detection and differentiation of ricin from the less toxic RCA120 through determination of the amino acid sequence of the protein in question, and active ricin can be monitored by MS as the release of adenine from the depurination of a nucleic acid substrate. In this work, we describe the application of MS-based methods to detect, differentiate and quantify ricin and RCA120 in nine blinded samples supplied as part of the EQuATox proficiency test. Overall, MS-based assays successfully identified all samples containing ricin or RCA120 with the exception of the sample spiked with the lowest concentration (0.414 ng/mL). In fact, mass spectrometry was the most successful method for differentiation of ricin and RCA120 based on amino acid determination. Mass spectrometric methods were also successful at ranking the functional activities of the samples, successfully yielding semi-quantitative results. These results indicate that MS-based assays are excellent techniques to detect, differentiate, and quantify ricin and RCA120 in complex matrices.
Journal Article
An International Proficiency Test to Detect, Identify and Quantify Ricin in Complex Matrices
by
Zeleny, Reinhard
,
Dorner, Brigitte
,
Schimmel, Heinz
in
Animals
,
Buffers
,
Enzyme-Linked Immunosorbent Assay
2015
While natural intoxications with seeds of Ricinus communis (R. communis) have long been known, the toxic protein ricin contained in the seeds is of major concern since it attracts attention of those intending criminal, terroristic and military misuse. In order to harmonize detection capabilities in expert laboratories, an international proficiency test was organized that aimed at identifying good analytical practices (qualitative measurements) and determining a consensus concentration on a highly pure ricin reference material (quantitative measurements). Sample materials included highly pure ricin as well as the related R. communis agglutinin (RCA120) spiked into buffer, milk and meat extract; additionally, an organic fertilizer naturally contaminated with R. communis shred was investigated in the proficiency test. The qualitative results showed that either a suitable combination of immunological, mass spectrometry (MS)-based and functional approaches or sophisticated MS-based approaches alone successfully allowed the detection and identification of ricin in all samples. In terms of quantification, it was possible to determine a consensus concentration of the highly pure ricin reference material. The results provide a basis for further steps in quality assurance and improve biopreparedness in expert laboratories worldwide.
Journal Article
Recommended Immunological Assays to Screen for Ricin-Containing Samples
2015
Ricin, a toxin from the plant Ricinus communis, is one of the most toxic biological agents known. Due to its availability, toxicity, ease of production and absence of curative treatments, ricin has been classified by the Centers for Disease Control and Prevention (CDC) as category B biological weapon and it is scheduled as a List 1 compound in the Chemical Weapons Convention. An international proficiency test (PT) was conducted to evaluate detection and quantification capabilities of 17 expert laboratories. In this exercise one goal was to analyse the laboratories’ capacity to detect and differentiate ricin and the less toxic, but highly homologuous protein R. communis agglutinin (RCA120). Six analytical strategies are presented in this paper based on immunological assays (four immunoenzymatic assays and two immunochromatographic tests). Using these immunological methods “dangerous” samples containing ricin and/or RCA120 were successfully identified. Based on different antibodies used the detection and quantification of ricin and RCA120 was successful. The ricin PT highlighted the performance of different immunological approaches that are exemplarily recommended for highly sensitive and precise quantification of ricin.
Journal Article
Merging carbohydrate chemistry with lectin histochemistry to study inhibition of lectin binding by glycoclusters in the natural tissue context
by
André, Sabine
,
Kayser, Klaus
,
Kaltner, Herbert
in
Animals
,
Binding Sites - drug effects
,
Biochemistry
2016
Recognition of glycans by lectins leads to cell adhesion and growth regulation. The specificity and selectivity of this process are determined by carbohydrate structure (sequence and shape) and topology of its presentation. The synthesis of (neo)glycoconjugates with bi- to oligo-valency (glycoclusters) affords tools to delineate structure–activity relationships by blocking lectin binding to an artificial matrix, often a glycoprotein, or cultured cell lines. The drawback of these assays is that glycan presentation is different from that in tissues. In order to approach the natural context, we here introduce lectin histochemistry on fixed tissue sections to determine the susceptibility of binding of two plant lectins, i.e., GSA-II and WGA, to a series of 10 glycoclusters. Besides valency, this panel covers changes in the anomeric position (α/β) and the atom at the glycosidic linkage (O/S). Flanked by cell and solid-phase assays with human tumor lines and two mucins, respectively, staining (intensity and profile) was analyzed in sections of murine jejunum, stomach and epididymis as a function of glycocluster presence. The marked and differential sensitivity of signal generation to structural aspects of the glycoclusters proves the applicability of this method. This enables comparisons between data sets obtained by using (neo)glycoconjugates, cells and the tissue context as platforms. The special advantage of processing tissue sections is the monitoring of interference with lectin association at sites that are relevant for functionality. Testing glycoclusters in lectin histochemistry will especially be attractive in cases of multi-target recognition (glycans, proteins and lipids) by a tissue lectin.
Journal Article
Identification and quantification of ricin in biomedical samples by magnetic immunocapture enrichment and liquid chromatography electrospray ionization tandem mass spectrometry
2014
Ricin is a toxic protein derived from castor beans and composed of a cytotoxic A chain and a galactose-binding B chain linked by a disulfide bond, which can inhibit protein synthesis and cause cell death. Owing to its high toxicity, ease of preparation, and lack of medical countermeasures, ricin has been listed as both chemical and biological warfare agents. For homeland security or public safety, the unambiguous, sensitive, and rapid methods for identification and quantification of ricin in complicated matrices are of urgent need. Mass spectrometric analysis, which provides specific and sensitive characterization of protein, can be applied to confirm and quantify ricin. Here, we report a liquid chromatography-electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS) method in which ricin was extracted and enriched from serum by immunocapture using anti-ricin monoclonal antibody 3D74 linked to magnetic beads, then digested by trypsin, and analyzed by LC-ESI-MS/MS. Among 19 distinct peptides observed in LC-quadrupole/time of flight-MS (LC-QTOF-MS), two specific and sensitive peptides, T
7A
(
49
VGLPINQR
56
) and T
14B
(
188
DNCLTSDSNIR
198
), were chosen, and a highly sensitive determination of ricin was established in LC-triple quadrupole-MS (LC-QqQ-MS) operating in multiple reaction monitoring mode. These specific peptides can definitely distinguish ricin from the homologous protein
Ricinus communis agglutinin
(RCA120), even though the amino acid sequence homology of the A-chain of ricin and RCA120 is up to ca. 93 % and that of B-chain is ca. 85 %. Furthermore, peptide T
7A
was preferred in the quantification of ricin because its sensitivity was at least one order of magnitude higher than that of the peptide T
14B
. Combined with immunocapture enrichment, this method provided a limit of detection of ca. 2.5 ng/mL and the limit of quantification was ca. 5 ng/mL of ricin in serum, respectively. Both precision and accuracy of this method were determined and the RSD was less than 15 %. This established method was then applied to measure ricin in serum samples collected from rats exposed to ricin at the dosage of 50 μg/kg in an intravenous injection manner. The results showed that ca. 10 ng/mL of the residual ricin in poisoned rats serum could be detected even at 12 h after exposure.
Journal Article