Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
2,514 result(s) for "Plant Root Nodulation"
Sort by:
Root-derived CLE glycopeptides control nodulation by direct binding to HAR1 receptor kinase
Leguminous plants establish a symbiosis with rhizobia to enable nitrogen fixation in root nodules under the control of the presumed root-to-shoot-to-root negative feedback called autoregulation of nodulation. In Lotus japonicus , autoregulation is mediated by CLE-RS genes that are specifically expressed in the root, and the receptor kinase HAR1 that functions in the shoot. However, the mature functional structures of CLE-RS gene products and the molecular nature of CLE-RS/HAR1 signalling governed by these spatially distant components remain elusive. Here we show that CLE-RS2 is a post-translationally arabinosylated glycopeptide derived from the CLE domain. Chemically synthesized CLE-RS glycopeptides cause significant suppression of nodulation and directly bind to HAR1 in an arabinose-chain and sequence-dependent manner. In addition, CLE-RS2 glycopeptide specifically produced in the root is found in xylem sap collected from the shoot. We propose that CLE-RS glycopeptides are the long sought mobile signals responsible for the initial step of autoregulation of nodulation. Symbiotic bacteria form nodules with plant roots and this is controlled by CLE-RS genes found in the plant. In this study, the CLE-RS2 gene product is shown to be a glycopeptide that can travel from the roots to the shoot of plants and binds to the receptor kinase HAR1.
Can co-inoculation of Bradyrhizobium and Azospirillum alleviate adverse effects of drought stress on soybean (Glycine max L. Merrill.)?
Harnessing the beneficial potential of plant growth-promoting rhizobacteria may be an alternative strategy to improve plant tolerance to drought stress. The effect of inoculation with Bradyrhizobium japonicum and Azospirillum brasilense either alone or in combination on the plant growth and drought tolerance of soybean [Glycine max (L.) Merrill.] was investigated in this study in greenhouse conditions. Treatments were arranged in a randomized block design in a 3 × 4 factorial: three irrigation regimes [100% of pot capacity—PC (well-watered control), 50% of PC (moderate stress) and 25% of PC (severe stress)] and four inoculation treatments [control (non-inoculated), inoculation with B. japonicum, inoculation with A. brasilense, and co-inoculation with B. japonicum and A. brasilense]. Leaf relative water content, cell membrane stability, root nodulation, plant growth, and morphophysiological indexes were recorded. The inoculation of soybean plants with B. japonicum and A.brasilense either alone or in combination improved leaf membrane stability under drought stress conditions when compared to non-inoculated plants; however, this lower damage to cell membranes was not sufficient to maintain the leaf water content of the plant under drought stress. Plants co-inoculated with B. japonicum and A.brasilense improved the root nodulation under severe drought conditions. Inoculation of B. japonicum and A. brasilense either alone or in combination reduced the pod abortion rate under moderate drought stress, but had no effect under severe drought stress. In summary, the co-inoculation of A. brasilense and B. japonicum alleviate adverse effects limited by drought stress to the growth of soybeans.Author: Please check and confirm that the authors [Elijanara Raissa Silva, Carlos Eduardo Silva Oliveira, Alan Mario Zuffo, Eduardo Pradi Vendruscolo] and their initials have been correctly identified and amend if necessary.The authors were correctly identified.
Expression of the CLE-RS3 gene suppresses root nodulation in Lotus japonicus
Cell-to-cell communication, principally mediated by short- or long-range mobile signals, is involved in many plant developmental processes. In root nodule symbiosis, a mutual relationship between leguminous plants and nitrogen-fixing rhizobia, the mechanism for the autoregulation of nodulation (AON) plays a key role in preventing the production of an excess number of nodules. AON is based on long-distance cell-to-cell communication between roots and shoots. In Lotus japonicus , two CLAVATA3/ESR-related (CLE) peptides, encoded by CLE - ROOT SIGNAL 1 ( CLE - RS1 ) and - RS2 , act as putative root-derived signals that transmit signals inhibiting further nodule development through interaction with a shoot-acting receptor-like kinase HYPERNODULATION ABERRANT ROOT FORMATION 1 (HAR1). Here, an in silico search and subsequent expression analyses enabled us to identify two new L. japonicus CLE genes that are potentially involved in nodulation, designated as CLE - RS3 and LjCLE40 . Time-course expression patterns showed that CLE - RS1 / 2 / 3 and LjCLE40 expression is induced during nodulation with different activation patterns. Furthermore, constitutive expression of CLE - RS3 significantly suppressed nodule formation in a HAR1 -dependent manner. TOO MUCH LOVE, a root-acting regulator of AON, is also required for the CLE-RS3 action. These results suggest that CLE-RS3 is a new component of AON in L. japonicus that may act as a potential root-derived signal through interaction with HAR1. Because CLE - RS2 , CLE - RS3 and LjCLE40 are located in tandem in the genome and their expression is induced not only by rhizobial infection but also by nitrate, these genes may have duplicated from a common gene.
Abscisic Acid Coordinates Nod Factor and Cytokinin Signaling during the Regulation of Nodulation in Medicago truncatula
Nodulation is tightly regulated in legumes to ensure appropriate levels of nitrogen fixation without excessive depletion of carbon reserves. This balance is maintained by intimately linking nodulation and its regulation with plant hormones. It has previously been shown that ethylene and jasmonic acid (JA) are able to regulate nodulation and Nod factor signal transduction. Here, we characterize the nature of abscisic acid (ABA) regulation of nodulation. We show that application of ABA inhibits nodulation, bacterial infection, and nodulin gene expression in Medicago truncatula. ABA acts in a similar manner as JA and ethylene, regulating Nod factor signaling and affecting the nature of Nod factor-induced calcium spiking. However, this action is independent of the ethylene signal transduction pathway. We show that genetic inhibition of ABA signaling through the use of a dominant-negative allele of ABSCISIC ACID INSENSITIVE1 leads to a hypernodulation phenotype. In addition, we characterize a novel locus of M. truncatula, SENSITIVITY TO ABA, that dictates the sensitivity of the plant to ABA and, as such, impacts the regulation of nodulation. We show that ABA can suppress Nod factor signal transduction in the epidermis and can regulate cytokinin induction of the nodule primordium in the root cortex. Therefore, ABA is capable of coordinately regulating the diverse developmental pathways associated with nodule formation and can intimately dictate the nature of the plants' response to the symbiotic bacteria.
Relationship between gibberellin, ethylene and nodulation in Pisum sativum
• Gibberellin (GA) deficiency resulting from the na mutation in pea (Pisum sativum) causes a reduction in nodulation. Nodules that do form are aberrant, having poorly developed meristems and a lack of enlarged cells. Studies using additional GA-biosynthesis double mutants indicate that this results from severe GA deficiency of the roots rather than simply dwarf shoot stature. • Double mutants isolated from crosses between na and three supernodulating pea mutants exhibit a supernodulation phenotype, but the nodule structures are aberrant. This suggests that severely reduced GA concentrations are not entirely inhibitory to nodule initiation, but that higher GA concentrations are required for proper nodule development. • na mutants evolve more than double the amount of ethylene produced by wild-type plants, indicating that low GA concentrations can promote ethylene production. The excess ethylene may contribute to the reduced nodulation of na plants, as application of an ethylene biosynthesis inhibitor increased na nodule numbers. However, these nodules were still aberrant in structure. • Constitutive GA signalling mutants also form significantly fewer nodules than wild-type plants. This suggests that there is an optimum degree of GA signalling required for nodule formation and that the GA signal, and not the concentration of bioactive GA per se, is important for nodulation.
Plant lectins: the ties that bind in root symbiosis and plant defense
Lectins are a diverse group of carbohydrate-binding proteins that are found within and associated with organisms from all kingdoms of life. Several different classes of plant lectins serve a diverse array of functions. The most prominent of these include participation in plant defense against predators and pathogens and involvement in symbiotic interactions between host plants and symbiotic microbes, including mycorrhizal fungi and nitrogen-fixing rhizobia. Extensive biological, biochemical, and molecular studies have shed light on the functions of plant lectins, and a plethora of uncharacterized lectin genes are being revealed at the genomic scale, suggesting unexplored and novel diversity in plant lectin structure and function. Integration of the results from these different types of research is beginning to yield a more detailed understanding of the function of lectins in symbiosis, defense, and plant biology in general.
Celebrating 20 Years of Genetic Discoveries in Legume Nodulation and Symbiotic Nitrogen Fixation
Since 1999, various forward- and reverse-genetic approaches have uncovered nearly 200 genes required for symbiotic nitrogen fixation (SNF) in legumes. These discoveries advanced our understanding of the evolution of SNF in plants and its relationship to other beneficial endosymbioses, signaling between plants and microbes, the control of microbial infection of plant cells, the control of plant cell division leading to nodule development, autoregulation of nodulation, intracellular accommodation of bacteria, nodule oxygen homeostasis, the control of bacteroid differentiation, metabolism and transport supporting symbiosis, and the control of nodule senescence. This review catalogs and contextualizes all of the plant genes currently known to be required for SNF in two model legume species, Medicago truncatula and Lotus japonicus, and two crop species, Glycine max (soybean) and Phaseolus vulgaris (common bean). We also briefly consider the future of SNF genetics in the era of pan-genomics and genome editing.
Suppression of hypernodulation in soybean by a leaf-extracted, NARK- and Nod factor-dependent, low molecular mass fraction
Legumes regulate the number of nodules they form via a process called autoregulation of nodulation (AON). This involves a shoot-derived inhibitor (SDI) molecule that is synthesized in the shoots and is transported down to the roots where it inhibits further nodule development. To characterize SDI, we developed a novel feeding bioassay. This involved feeding aqueous leaf extracts directly into the petiole of hypernodulating and supernodulating nark mutant plants of Glycine max (soybean). These mutants normally exhibit an increased nodulation phenotype because SDI is not produced and thus AON is nonfunctional. Feeding wild-type leaf extracts presumed to contain SDI was successful in suppressing the increased nodulation phenotype, whereas feeding with Gmnark leaf extracts did not. Suppression activity was inoculation-dependent, Nod factor-dependent, required GmNARK activity, and was heat-, Proteinase K- and ribonuclease A-resistant. Wild-type extracts maintained suppressive activity even at a ninefold dilution. Sinorhizobium meliloti-inoculated Medicago truncatula leaf extracts from wild-type, but not from supernodulating mutant Mtsunn, suppressed hypernodulation in soybean. Our results demonstrate that the petiole feeding bioassay is an efficient and effective technique to introduce aqueous extracts into plants. They also demonstrate that SDI is a small compound with an apparent molecular mass of < 1000 Da and is unlikely to be a protein or an RNA molecule.
How does sulphur availability modify N acquisition of white clover (Trifolium repens L.)?
The role of S in legume growth, N uptake, and N2 fixation was investigated using white clover (Trifolium repens L.) as a model species. We examined whether the effect of sulphate addition on N fixation resulted from a stimulation of host plant growth, a specific effect of S on nodulation, or a specific effect of S on nodule metabolism. Clones of white clover, inoculated with Rhizobium leguminosarum, were grown for 140 d in a hydroponic system with three levels of sulphate concentration (0 mM, 0.095 mM, and 0.380 mM). Nodule morphological and biochemical traits, such as root length, nodule biomass and volume, nodule protein contents (nitrogenase and leghaemoglobin obtained by an immunological approach), and root amino acid concentrations, were used to analyse the effect of sulphate availability on N2 fixation. The application of sulphate increased whole plant dry mass, root length, and nodule biomass, expressed on a root-length basis. N uptake proved less sensitive than N2 fixation to the effects of S-deficiency, and decreased as a consequence of the lower root length observed in S-deficient plants. N2 fixation was drastically reduced in S-deficient plants as a consequence of a low nodule development, but also due to low nitrogenase and leghaemoglobin production. This effect is likely to be due to down-regulation by a N-feedback mechanism, as, under severe S-deficiency, the high concentration of whole plant N and the accumulation of N-rich amino acids (such as asparagine) indicated that the assimilation of N exceeded the amount required for plant growth.
A Remote cis-Regulatory Region Is Required for NIN Expression in the Pericycle to Initiate Nodule Primordium Formation in Medicago truncatula
The legume-rhizobium symbiosis results in nitrogen-fixing root nodules, and their formation involves both intracellular infection initiated in the epidermis and nodule organogenesis initiated in inner root cell layers. NODULE INCEPTION (NIN) is a nodule-specific transcription factor essential for both processes. These NIN-regulated processes occur at different times and locations in the root, demonstrating a complex pattern of spatiotemporal regulation. We show that regulatory sequences sufficient for the epidermal infection process are located within a 5 kb region directly upstream of the NIN start codon in Medicago truncatula. Furthermore, we identify a remote upstream cis-regulatory region required for the expression of NIN in the pericycle, and we show that this region is essential for nodule organogenesis. This region contains putative cytokinin response elements and is conserved in eight more legume species. Both the cytokinin receptor 1, which is essential for nodule primordium formation, and the B-type response regulator RR1 are expressed in the pericycle in the susceptible zone of the uninoculated root. This, together with the identification of the cytokinin-responsive elements in the NIN promoter, strongly suggests that NIN expression is initially triggered by cytokinin signaling in the pericycle to initiate nodule primordium formation.