Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Series TitleSeries Title
-
Reading LevelReading Level
-
YearFrom:-To:
-
More FiltersMore FiltersContent TypeItem TypeIs Full-Text AvailableSubjectCountry Of PublicationPublisherSourceTarget AudienceDonorLanguagePlace of PublicationContributorsLocation
Done
Filters
Reset
98,100
result(s) for
"Plant Roots"
Sort by:
All about roots
by
Throp, Claire, author
,
Throp, Claire. All about plants
in
Roots (Botany) Juvenile literature.
,
Plant anatomy Juvenile literature.
,
Roots (Botany)
2015
Introduces children to plants, what roots are, and why they are important.
peptide-encoding CEP1 gene modulates lateral root and nodule numbers in Medicago truncatula
by
Imin, Nijat
,
Mohd-Radzman, Nadiatul A
,
Ogilvie, Huw A
in
amino acids
,
carbon dioxide
,
Carbon Dioxide - metabolism
2013
The role of MtCEP1, a member of the CEP (C-terminally encoded peptide) signaling peptide family, was examined in Medicago truncatula root development. MtCEP1 was expressed in root tips, vascular tissue, and young lateral organs, and was up-regulated by low nitrogen levels and, independently, by elevated CO2. Overexpressing MtCEP1 or applying MtCEP1 peptide to roots elicited developmental phenotypes: inhibition of lateral root formation, enhancement of nodulation, and the induction of periodic circumferential root swellings, which arose from cortical, epidermal, and pericycle cell divisions and featured an additional cortical cell layer. MtCEP peptide addition to other legume species induced similar phenotypes. The enhancement of nodulation by MtCEP1 is partially tolerant to high nitrate, which normally strongly suppresses nodulation. These nodules develop faster, are larger, and fix more nitrogen in the absence and presence of inhibiting nitrate levels. At 25mM nitrate, nodules formed on pre-existing swelling sites induced by MtCEP1 overexpression. RNA interference-mediated silencing of several MtCEP genes revealed a negative correlation between transcript levels of MtCEP1 and MtCEP2 with the number of lateral roots. MtCEP1 peptide-dependent phenotypes were abolished or attenuated by altering or deleting key residues in its 15 amino acid domain. RNA-Seq analysis revealed that 89 and 116 genes were significantly up- and down-regulated, respectively, by MtCEP1 overexpression, including transcription factors WRKY, bZIP, ERF, and MYB, homologues of LOB29, SUPERROOT2, and BABY BOOM. Taken together, the data suggest that the MtCEP1 peptide modulates lateral root and nodule development in M. truncatula.
Journal Article
Little Tree and the wood wide web
by
Brownridge, Lucy, author
,
Abbo, Hannah, illustrator
,
Ivy Kids, publisher
in
Trees Juvenile literature.
,
Plant ecology Juvenile literature.
,
Roots (Botany) Juvenile literature.
2023
\"Little Tree is very small on the dark forest floor. She is terribly lonely and she can't reach any light or water. Her worried feeling sinks down to the tips of her roots. But little does she know her roots are connected to a network of fungus that connects every single tree in the forest. The network sends her message all over the forest! \"Little Tree needs help!\" But who will listen?\"-- Provided by publisher.
The NIN Transcription Factor Coordinates Diverse Nodulation Programs in Different Tissues of the Medicago truncatula Root
by
Vernié, Tatiana
,
Ding, Yiliang
,
de Carvalho-Niebel, Fernanda
in
Biochemistry, Molecular Biology
,
Botanics
,
Calcium
2015
Biological nitrogen fixation in legumes occurs in nodules that are initiated in the root cortex following Nod factor recognition at the root surface, and this requires coordination of diverse developmental programs in these different tissues. We show that while early Nod factor signaling associated with calcium oscillations is limited to the root surface, the resultant activation of Nodule Inception (NIN) in the root epidermis is sufficient to promote cytokinin signaling and nodule organogenesis in the inner root cortex. NIN or a product of its action must be associated with the transmission of a signal between the root surface and the cortical cells where nodule organogenesis is initiated. NIN appears to have distinct functions in the root epidermis and the root cortex. In the epidermis, NIN restricts the extent of Early Nodulin 11 (ENOD11) expression and does so through competitive inhibition of ERF Required for Nodulation (ERN1). In contrast, NIN is sufficient to promote the expression of the cytokinin receptor Cytokinin Response 1 (CRE1), which is restricted to the root cortex. Our work in Medicago truncatula highlights the complexity of NIN action and places NIN as a central player in the coordination of the symbiotic developmental programs occurring in differing tissues of the root that combined are necessary for a nitrogen-fixing symbiosis.
Journal Article
Evolutionary history resolves global organization of root functional traits
by
Bardgett, Richard D.
,
McCormack, M. Luke
,
Eissenstat, David M.
in
631/158/852
,
631/158/857
,
631/449/2668
2018
Analyses of a global dataset of plant root traits identify an ancestral conservative strategy based on thick roots and mycorrhizal symbiosis, and an evolutionarily more-recent opportunistic strategy of thin roots that efficiently use photosynthetic carbon for soil exploration.
Unearthing evolution in roots
The 'leaf economics spectrum' describes the trade-off that plants make between the energetic and material cost of building a leaf and how long it lasts, but do similar principles govern investment in their roots? The answer seems to be 'yes'. Here, the authors assemble a large database of root traits of 369 species from seven global biomes. The data show that thicker roots tend to be found in more primitive plants such as those in the tropics and those that are sustained through a symbiotic relationship with fungi. Thinner roots are correlated with more recent evolutionary developments and the colonization of temperate and boreal habitats where the supply of nutrients and resources is more seasonal.
Plant roots have greatly diversified in form and function since the emergence of the first land plants
1
,
2
, but the global organization of functional traits in roots remains poorly understood
3
,
4
. Here we analyse a global dataset of 10 functionally important root traits in metabolically active first-order roots, collected from 369 species distributed across the natural plant communities of 7 biomes. Our results identify a high degree of organization of root traits across species and biomes, and reveal a pattern that differs from expectations based on previous studies
5
,
6
of leaf traits. Root diameter exerts the strongest influence on root trait variation across plant species, growth forms and biomes. Our analysis suggests that plants have evolved thinner roots since they first emerged in land ecosystems, which has enabled them to markedly improve their efficiency of soil exploration per unit of carbon invested and to reduce their dependence on symbiotic mycorrhizal fungi. We also found that diversity in root morphological traits is greatest in the tropics, where plant diversity is highest and many ancestral phylogenetic groups are preserved. Diversity in root morphology declines sharply across the sequence of tropical, temperate and desert biomes, presumably owing to changes in resource supply caused by seasonally inhospitable abiotic conditions. Our results suggest that root traits have evolved along a spectrum bounded by two contrasting strategies of root life: an ancestral ‘conservative’ strategy in which plants with thick roots depend on symbiosis with mycorrhizal fungi for soil resources and a more-derived ‘opportunistic’ strategy in which thin roots enable plants to more efficiently leverage photosynthetic carbon for soil exploration. These findings imply that innovations of belowground traits have had an important role in preparing plants to colonize new habitats, and in generating biodiversity within and across biomes.
Journal Article
Cytokinin Biosynthesis Promotes Cortical Cell Responses during Nodule Development
by
Sandal, Niels
,
Nadzieja, Marcin
,
Novák, Ondřej
in
Cytokinins - biosynthesis
,
Gene Expression Regulation, Developmental - genetics
,
Gene Expression Regulation, Plant
2017
Legume mutants have shown the requirement for receptor-mediated cytokinin signaling in symbiotic nodule organogenesis. While the receptors are central regulators, cytokinin also is accumulated during early phases of symbiotic interaction, but the pathways involved have not yet been fully resolved. To identify the source, timing, and effect of this accumulation, we followed transcript levels of the cytokinin biosynthetic pathway genes in a sliding developmental zone of Lotus japonicus roots. LjIpt2 and LjLog4 were identified as the major contributors to the first cytokinin burst. The genetic dependence and Nod factor responsiveness of these genes confirm that cytokinin biosynthesis is a key target of the common symbiosis pathway. The accumulation of LjIpt2 and LjLog4 transcripts occurs independent of the LjLhk1 receptor during nodulation. Together with the rapid repression of both genes by cytokinin, this indicates that LjIpt2 and LjLog4 contribute to, rather than respond to, the initial cytokinin buildup. Analysis of the cytokinin response using the synthetic cytokinin sensor, TCSn, showed that this response occurs in cortical cells before spreading to the epidermis in L. japonicus. While mutant analysis identified redundancy in several biosynthesis families, we found that mutation of LjIpt4 limits nodule numbers. Overexpression of LjIpt3 or LjLog4 alone was insufficient to produce the robust formation of spontaneous nodules. In contrast, overexpressing a complete cytokinin biosynthesis pathway leads to large, often fused spontaneous nodules. These results show the importance of cytokinin biosynthesis in initiating and balancing the requirement for cortical cell activation without uncontrolled cell proliferation.
Journal Article
NODULE INCEPTION creates a long-distance negative feedback loop involved in homeostatic regulation of nodule organ production
by
Hayashi, Makoto
,
Hirakawa, Hideki
,
Soyano, Takashi
in
Bacteria
,
Biological Sciences
,
Cell division
2014
Significance Long-range organ-to-organ communications are important for the coordination of development and environmental adaptation in multicellular organisms, particularly plants that continuously produce postembryonic lateral organs in various environmental conditions. The substance of homeostatic regulation of organ development via long-distance signals has not yet been identified, however. Legumes use an autoregulatory negative-feedback system involving root–shoot communication to maintain optimal numbers of nodules by systemically suppressing nodulation. We show that a transcription factor, NODULE INCEPTION (NIN), an essential inducer for nodule primordium formation, directly activates genes encoding small peptides that act as root-derived long-distance mobile signals, leading to repression of endogenous NIN though the root–shoot communication and resulting in systemic suppression of nodulation. We demonstrate that an autoregulatory negative-feedback loop homeostatically regulates nodule production via this long-range signaling.
Autoregulatory negative-feedback loops play important roles in fine-balancing tissue and organ development. Such loops are composed of short-range intercellular signaling pathways via cell–cell communications. On the other hand, leguminous plants use a long-distance negative-feedback system involving root–shoot communication to control the number of root nodules, root lateral organs that harbor symbiotic nitrogen-fixing bacteria known as rhizobia. This feedback system, known as autoregulation of nodulation (AON), consists of two long-distance mobile signals: root-derived and shoot-derived signals. Two Lotus japonicus CLAVATA3/ENDOSPERM SURROUNDING REGION (CLE)-related small peptides, CLE ROOT SIGNAL1 (CLE-RS1) and CLE-RS2, function as root-derived signals and are perceived by a shoot-acting AON factor, the HYPERNODULATION ABERRANT ROOT FORMATION1 (HAR1) receptor protein, an ortholog of Arabidopsis CLAVATA1, which is responsible for shoot apical meristem homeostasis. This peptide–receptor interaction is necessary for systemic suppression of nodulation. How the onset of nodulation activates AON and how optimal nodule numbers are maintained remain unknown, however. Here we show that an RWP-RK–containing transcription factor, NODULE INCEPTION (NIN), which induces nodule-like structures without rhizobial infection when expressed ectopically, directly targets CLE-RS1 and CLE-RS2. Roots constitutively expressing NIN systemically repress activation of endogenous NIN expression in untransformed roots of the same plant in a HAR1-dependent manner, leading to systemic suppression of nodulation and down-regulation of CLE expression. Our findings provide, to our knowledge, the first molecular evidence of a long-distance autoregulatory negative-feedback loop that homeostatically regulates nodule organ formation.
Journal Article
Responses of root architecture development to low phosphorus availability: a review
by
Wang, Huan
,
Zhang, Yong Song
,
Chai, Ru Shan
in
abscisic acid
,
Adaptation, Physiological
,
anatomy & histology
2013
BackgroundPhosphorus (P) is an essential element for plant growth and development but it is often a limiting nutrient in soils. Hence, P acquisition from soil by plant roots is a subject of considerable interest in agriculture, ecology and plant root biology. Root architecture, with its shape and structured development, can be considered as an evolutionary response to scarcity of resources.ScopeThis review discusses the significance of root architecture development in response to low P availability and its beneficial effects on alleviation of P stress. It also focuses on recent progress in unravelling cellular, physiological and molecular mechanisms in root developmental adaptation to P starvation. The progress in a more detailed understanding of these mechanisms might be used for developing strategies that build upon the observed explorative behaviour of plant roots.ConclusionsThe role of root architecture in alleviation of P stress is well documented. However, this paper describes how plants adjust their root architecture to low-P conditions through inhibition of primary root growth, promotion of lateral root growth, enhancement of root hair development and cluster root formation, which all promote P acquisition by plants. The mechanisms for activating alterations in root architecture in response to P deprivation depend on changes in the localized P concentration, and transport of or sensitivity to growth regulators such as sugars, auxins, ethylene, cytokinins, nitric oxide (NO), reactive oxygen species (ROS) and abscisic acid (ABA). In the process, many genes are activated, which in turn trigger changes in molecular, physiological and cellular processes. As a result, root architecture is modified, allowing plants to adapt effectively to the low-P environment. This review provides a framework for understanding how P deficiency alters root architecture, with a focus on integrated physiological and molecular signalling.
Journal Article
Mycorrhiza-Induced Resistance and Priming of Plant Defenses
2012
Symbioses between plants and beneficial soil microorganisms like arbuscular-mycorrhizal fungi (AMF) are known to promote plant growth and help plants to cope with biotic and abiotic stresses. Profound physiological changes take place in the host plant upon root colonization by AMF affecting the interactions with a wide range of organisms below- and above-ground. Protective effects of the symbiosis against pathogens, pests, and parasitic plants have been described for many plant species, including agriculturally important crop varieties. Besides mechanisms such as improved plant nutrition and competition, experimental evidence supports a major role of plant defenses in the observed protection. During mycorrhiza establishment, modulation of plant defense responses occurs thus achieving a functional symbiosis. As a consequence of this modulation, a mild, but effective activation of the plant immune responses seems to occur, not only locally but also systemically. This activation leads to a primed state of the plant that allows a more efficient activation of defense mechanisms in response to attack by potential enemies. Here, we give an overview of the impact on interactions between mycorrhizal plants and pathogens, herbivores, and parasitic plants, and we summarize the current knowledge of the underlying mechanisms. We focus on the priming of jasmonate-regulated plant defense mechanisms that play a central role in the induction of resistance by arbuscular mycorrhizas.
Journal Article
LACK OF SYMBIONT ACCOMMODATION controls intracellular symbiont accommodation in root nodule and arbuscular mycorrhizal symbiosis in Lotus japonicus
by
Suzaki, Takuya
,
Miura, Kenji
,
Misawa, Fumika
in
Arabidopsis
,
Arbuscular mycorrhizas
,
Bioinformatics
2019
Nitrogen-fixing rhizobia and arbuscular mycorrhizal fungi (AMF) form symbioses with plant roots and these are established by precise regulation of symbiont accommodation within host plant cells. In model legumes such as Lotus japonicus and Medicago truncatula, rhizobia enter into roots through an intracellular invasion system that depends on the formation of a root-hair infection thread (IT). While IT-mediated intracellular rhizobia invasion is thought to be the most evolutionarily derived invasion system, some studies have indicated that a basal intercellular invasion system can replace it when some nodulation-related factors are genetically modified. In addition, intracellular rhizobia accommodation is suggested to have a similar mechanism as AMF accommodation. Nevertheless, our understanding of the underlying genetic mechanisms is incomplete. Here we identify a L. japonicus nodulation-deficient mutant, with a mutation in the LACK OF SYMBIONT ACCOMMODATION (LAN) gene, in which root-hair IT formation is strongly reduced, but intercellular rhizobial invasion eventually results in functional nodule formation. LjLAN encodes a protein that is homologous to Arabidopsis MEDIATOR 2/29/32 possibly acting as a subunit of a Mediator complex, a multiprotein complex required for gene transcription. We also show that LjLAN acts in parallel with a signaling pathway including LjCYCLOPS. In addition, the lan mutation drastically reduces the colonization levels of AMF. Taken together, our data provide a new factor that has a common role in symbiont accommodation process during root nodule and AM symbiosis.
Journal Article