Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
496 result(s) for "Plant Vascular Bundle - metabolism"
Sort by:
AUX/LAX Genes Encode a Family of Auxin Influx Transporters That Perform Distinct Functions during Arabidopsis Development
Auxin transport, which is mediated by specialized influx and efflux carriers, plays a major role in many aspects of plant growth and development. AUXIN1 (AUX1) has been demonstrated to encode a high-affinity auxin influx carrier. In Arabidopsis thaliana, AUX1 belongs to a small multigene family comprising four highly conserved genes (i.e., AUX1 and LIKE AUX1 [LAX] genes LAX1, LAX2, and LAX3). We report that all four members of this AUX/LAX family display auxin uptake functions. Despite the conservation of their biochemical function, AUX1, LAX1, and LAX3 have been described to regulate distinct auxin-dependent developmental processes. Here, we report that LAX2 regulates vascular patterning in cotyledons. We also describe how regulatory and coding sequences of AUX/LAX genes have undergone subfunctionalization based on their distinct patterns of spatial expression and the inability of LAX sequences to rescue aux1 mutant phenotypes, respectively. Despite their high sequence similarity at the protein level, transgenic studies reveal that LAX proteins are not correctly targeted in the AUX1 expression domain. Domain swapping studies suggest that the N-terminal half of AUX1 is essential for correct LAX localization. We conclude that Arabidopsis AUX/LAX genes encode a family of auxin influx transporters that perform distinct developmental functions and have evolved distinct regulatory mechanisms.
Orchestration of three transporters and distinct vascular structures in node for intervascular transfer of silicon in rice
Requirement of mineral elements in different plant tissues is not often consistent with their transpiration rate; therefore, plants have developed systems for preferential distribution of mineral elements to the developing tissues with low transpiration. Here we took silicon (Si) as an example and revealed an efficient system for preferential distribution of Si in the node of rice (Oryza sativa). Rice is able to accumulate more than 10% Si of the dry weight in the husk, which is required for protecting the grains from water loss and pathogen infection. However, it has been unknown for a long time how this hyperaccumulation is achieved. We found that three transporters (Lsi2, Lsi3, and Lsi6) located at the node are involved in the intervascular transfer, which is required for the preferential distribution of Si. Lsi2 was polarly localized to the bundle sheath cell layer around the enlarged vascular bundles, which is next to the xylem transfer cell layer where Lsi6 is localized. Lsi3 was located in the parenchyma tissues between enlarged vascular bundles and diffuse vascular bundles. Similar to Lsi6, knockout of Lsi2 and Lsi3 also resulted in decreased distribution of Si to the panicles but increased Si to the flag leaf. Furthermore, we constructed a mathematical model for Si distribution and revealed that in addition to cooperation of three transporters, an apoplastic barrier localized at the bundle sheath cells and development of the enlarged vascular bundles in node are also required for the hyperaccumulation of Si in rice husk.
Two sides to every leaf: water and CO 2 transport in hypostomatous and amphistomatous leaves
Leaves with stomata on both upper and lower surfaces, termed amphistomatous, are relatively rare compared with hypostomatous leaves with stomata only on the lower surface. Amphistomaty occurs predominantly in fast‐growing herbaceous annuals and in slow‐growing perennial shrubs and trees. In this paper, we present the current understanding and hypotheses on the costs and benefits of amphistomaty related to water and CO 2 transport in contrasting leaf morphologies. First, there is no evidence that amphistomatous species achieve higher stomatal densities on a projected leaf area basis than hypostomatous species, but two‐sided gas exchange is less limited by boundary layer effects. Second, amphistomaty may provide a specific advantage in thick leaves by shortening the pathway for CO 2 transport between the atmosphere and the chloroplasts. In thin leaves of fast‐growing herbaceous annuals, in which both the adaxial and abaxial pathways are already short, amphistomaty enhances leaf–atmosphere gas‐exchange capacity. Third, amphistomaty may help to optimise the leaf‐interior water status for CO 2 transport by reducing temperature gradients and so preventing the condensation of water that could limit CO 2 diffusion. Fourth, a potential cost of amphistomaty is the need for additional investments in leaf water transport tissue to balance the water loss through the adaxial surface.
Characterizing Regulatory and Functional Differentiation between Maize Mesophyll and Bundle Sheath Cells by Transcriptomic Analysis
To study the regulatory and functional differentiation between the mesophyll (M) and bundle sheath (BS) cells of maize (Zea mays), we isolated large quantities of highly homogeneous M and BS cells from newly matured second leaves for transcriptome profiling by RNA sequencing. A total of 52,421 annotated genes with at least one read were found in the two transcriptomes. Defining a gene with more than one read per kilobase per million mapped reads as expressed, we identified 18,482 expressed genes; 14,972 were expressed in M cells, including 53 M-enriched transcription factor (TF) genes, whereas 17,269 were expressed in BS cells, including 214 BS-enriched TF genes. Interestingly, many TF gene families show a conspicuous BS preference in expression. Pathway analyses reveal differentiation between the two cell types in various functional categories, with the M cells playing more important roles in light reaction, protein synthesis and folding, tetrapyrrole synthesis, and RNA binding, while the BS cells specialize in transport, signaling, protein degradation and posttranslational modification, major carbon, hydrogen, and oxygen metabolism, cell division and organization, and development. Genes coding for several transporters involved in the shuttle of C 4 metabolites and BS cell wall development have been identified, to our knowledge, for the first time. This comprehensive data set will be useful for studying M/BS differentiation in regulation and function.
Overexpression of the vascular brassinosteroid receptor BRL3 confers drought resistance without penalizing plant growth
Drought represents a major threat to food security. Mechanistic data describing plant responses to drought have been studied extensively and genes conferring drought resistance have been introduced into crop plants. However, plants with enhanced drought resistance usually display lower growth, highlighting the need for strategies to uncouple drought resistance from growth. Here, we show that overexpression of BRL3, a vascular-enriched member of the brassinosteroid receptor family, can confer drought stress tolerance in Arabidopsis . Whereas loss-of-function mutations in the ubiquitously expressed BRI1 receptor leads to drought resistance at the expense of growth, overexpression of BRL3 receptor confers drought tolerance without penalizing overall growth. Systematic analyses reveal that upon drought stress, increased BRL3 triggers the accumulation of osmoprotectant metabolites including proline and sugars. Transcriptomic analysis suggests that this results from differential expression of genes in the vascular tissues. Altogether, this data suggests that manipulating BRL3 expression could be used to engineer drought tolerant crops. Drought resistant plants typically have reduced growth. Here the authors show that overexpression of the BRL3 brassinosteroid receptor confers drought tolerance and accumulation of osmoprotectant metabolites without penalizing growth, demonstrating that drought response and growth can be uncoupled.
Control of Abscisic Acid Catabolism and Abscisic Acid Homeostasis Is Important for Reproductive Stage Stress Tolerance in Cereals
Drought stress at the reproductive stage causes pollen sterility and grain loss in wheat (Triticum aestivum). Drought stress induces abscisic acid (ABA) biosynthesis genes in anthers and ABA accumulation in spikes of drought-sensitive wheat varieties. In contrast, drought-tolerant wheat accumulates lower ABA levels, which correlates with lower ABA biosynthesis and higher ABA catabolic gene expression (ABA 8'-hydroxylase). Wheat TaABA8' OH1 deletion lines accumulate higher spike ABA levels and are more drought sensitive. ABA treatment of the spike mimics the effect of drought, causing high levels of sterility. ABA treatment represses the anther cell wall invertase gene TalVR1, and drought-tolerant lines appeared to be more sensitive to the effect of ABA. Drought-induced sterility shows similarity to cold-induced sterility in rice (Oryza sativa). In coldstressed rice, the rate of ABA accumulation was similar in cold-sensitive and cold-tolerant lines during the first 8 h of cold treatment, but in the tolerant line, ABA catabolism reduced ABA levels between 8 and 16 h of cold treatment. The ABA biosynthesis gene encoding 9-cis-epoxycarotenoid dioxygenase in anthers is mainly expressed in parenchyma cells surrounding the vascular bundle of the anther. Transgenic rice lines expressing the wheat TaABA8' OH1 gene under the control of the OsG6B tapetum-specific promoter resulted in reduced anther ABA levels under cold conditions. The transgenic lines showed that anther sink strength (OsINV4) was maintained under cold conditions and that this correlated with improved cold stress tolerance. Our data indicate that ABA and ABA 8'-hydroxylase play an important role in controlling anther ABA homeostasis and reproductive stage abiotic stress tolerance in cereals.
The CLE9/10 secretory peptide regulates stomatal and vascular development through distinct receptors
The frequency and orientation of cell division are regulated by intercellular signalling molecules; however, tissue-specific regulatory systems for cell divisions are only partially understood. Here, we report that the peptide hormone CLAVATA3/ESR-RELATED 9/10 (CLE9/10) regulates two different developmental processes, stomatal lineage development and xylem development, through two distinct receptor systems in Arabidopsis thaliana . We show that the receptor kinase HAESA-LIKE 1 (HSL1) is a CLE9/10 receptor that regulates stomatal lineage cell division, and BARELY NO MERISTEM (BAM) class receptor kinases are CLE9/10 receptors that regulate periclinal cell division of xylem precursor cells. Both HSL1 and BAM1 bind to CLE9/10, but only HSL1 recruits SOMATIC EMBRYOGENESIS RECEPTOR KINASES as co-receptors in the presence of CLE9/10, suggesting different signalling modes for these receptor systems. Peptides play important roles in plants. Identical CLE9/10 peptides can be perceived by two receptor complexes, depending on the tissue context, during the control of different developmental processes: stomatal lineage and xylem development.
Vascular bundle cell-specific expression of a phosphate transporter improves phosphate use efficiency of transgenic Arabidopsis without detrimental effects
Constitutive overexpression of phosphate (Pi) transporter family 1 often results in the accumulation of toxic levels of Pi, which causes growth retardation in plants. In contrast, we had previously reported that root epidermis-specific overexpression of the phosphate transporter TaPT2 in Arabidopsis leads to improved growth and Pi use efficiency. In the present study, we used promoters AtHKT1;1 and SKOR , which are predominantly expressed in the vascular bundle tissues, to overexpress TaPT2 . Transgenic lines exhibited increased shoot growth compared to wild type plants under normal- and low-Pi conditions, along with elevated root Pi and total P content, and higher xylem sap Pi concentration, specifically under low-Pi conditions. This was attributed to moderate Pi accumulation in the xylem parenchyma cells, enhancing the Pi uploading capacity to the xylem. SKOR-TaPT2 , however, did not complement pho1 mutant, which was defective in uploading Pi to the xylem. The transcriptional levels of VPT1 and VPT3 , which are responsible for transporting excess Pi into a vacuole, were upregulated in SKOR promoter lines under normal-Pi conditions. Our results suggested that root vascular bundle-specific expression of TaPT2 is another promising strategy for increasing biomass production, Pi uptake, and Pi use efficiency while preventing growth retardation in transgenic plants.
The Thioredoxin GbNRX1 Plays a Crucial Role in Homeostasis of Apoplastic Reactive Oxygen Species in Response to Verticillium dahliae Infection in Cotton
Examining the proteins that plants secrete into the apoplast in response to pathogen attack provides crucial information for understanding the molecular mechanisms underlying plant innate immunity. In this study, we analyzed the changes in the root apoplast secretome of the Verticillium wilt-resistant island cotton cv Hai 7124 (Gossypium barbadense) upon infection with Verticillium dahliae. Two-dimensional differential gel electrophoresis and matrix-assisted laser desorption/ionization tandem time-of-flight mass spectrometry analysis identified 68 significantly altered spots, corresponding to 49 different proteins. Gene ontology annotation indicated that most of these proteins function in reactive oxygen species (ROS) metabolism and defense response. Of the ROS-related proteins identified, we further characterized a thioredoxin, GbNRX1, which increased in abundance in response to V. dahliae challenge, finding that GbNRX1 functions in apoplastic ROS scavenging after the ROS burst that occurs upon recognition of V. dahliae. Silencing of GbNRX1 resulted in defective dissipation of apoplastic ROS, which led to higher ROS accumulation in protoplasts. As a result, the GbNRX1-silenced plants showed reduced wilt resistance, indicating that the initial defense response in the root apoplast requires the antioxidant activity of GbNRX1. Together, our results demonstrate that apoplastic ROS generation and scavenging occur in tandem in response to pathogen attack; also, the rapid balancing of redox to maintain homeostasis after the ROS burst, which involves GbNRX1, is critical for the apoplastic immune response.
Soluble phenylpropanoids are involved in the defense response of Arabidopsis against Verticillium longisporum
Verticillium longisporum is a soil‐borne vascular pathogen causing economic loss in rape. Using the model plant Arabidopsis this study analyzed metabolic changes upon fungal infection in order to identify possible defense strategies of Brassicaceae against this fungus. Metabolite fingerprinting identified infection‐induced metabolites derived from the phenylpropanoid pathway. Targeted analysis confirmed the accumulation of sinapoyl glucosides, coniferin, syringin and lignans in leaves from early stages of infection on. At later stages, the amounts of amino acids increased. To test the contribution of the phenylpropanoid pathway, mutants in the pathway were analyzed. The sinapate‐deficient mutant fah1‐2 showed stronger infection symptoms than wild‐type plants, which is most likely due to the lack of sinapoyl esters. Moreover, the coniferin accumulating transgenic plant UGT72E2‐OE was less susceptible. Consistently, sinapoyl glucose, coniferyl alcohol and coniferin inhibited fungal growth and melanization in vitro, whereas sinapyl alcohol and syringin did not. The amount of lignin was not significantly altered supporting the notion that soluble derivatives of the phenylpropanoid pathway contribute to defense. These data show that soluble phenylpropanoids are important for the defense response of Arabidopsis against V. longisporum and that metabolite fingerprinting is a valuable tool to identify infection‐relevant metabolic markers.