Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Series TitleSeries Title
-
Reading LevelReading Level
-
YearFrom:-To:
-
More FiltersMore FiltersContent TypeItem TypeIs Full-Text AvailableSubjectCountry Of PublicationPublisherSourceTarget AudienceDonorLanguagePlace of PublicationContributorsLocation
Done
Filters
Reset
379,785
result(s) for
"Plant ecology"
Sort by:
Plants and ecosystems
\"From tiny mosses to towering conifers, learn all about the different plants growing in forests, deserts, mountaintops, tundra, and everywhere in between.\"--Provided by publisher.
Towards a multidimensional root trait framework: a tree root review
by
Thomas W. Kuyper4
,
Frank J. Sterck
,
Eric J. W. Visser
in
Aluminum
,
Bosecologie en Bosbeheer
,
Carbon dioxide
2016
The search for a root economics spectrum (RES) has been sparked by recent interest in trait-based plant ecology. By analogy with the one-dimensional leaf economics spectrum (LES), fine-root traits are hypothesised to match leaf traits which are coordinated along one axis from resource acquisitive to conservative traits. However, our literature review and meta-level analysis reveal no consistent evidence of an RES mirroring an LES. Instead the RES appears to be multidimensional. We discuss three fundamental differences contributing to the discrepancy between these spectra. First, root traits are simultaneously constrained by various environmental drivers not necessarily related to resource uptake. Second, above- and belowground traits cannot be considered analogues, because they function differently and might not be related to resource uptake in a similar manner. Third, mycorrhizal interactions may offset selection for an RES. Understanding and explaining the belowground mechanisms and trade-offs that drive variation in root traits, resource acquisition and plant performance across species, thus requires a fundamentally different approach than applied aboveground. We therefore call for studies that can functionally incorporate the root traits involved in resource uptake, the complex soil environment and the various soil resource uptake mechanisms – particularly the mycorrhizal pathway – in a multidimensional root trait framework.
Journal Article
A plant economics spectrum of litter decomposability
by
Cornelissen, Johannes H. C.
,
Aerts, Rien
,
Freschet, Grégoire T.
in
afterlife effects
,
Animal and plant ecology
,
Animal, plant and microbial ecology
2012
1. Recent evidence indicates tight control of plant resource economics over interspecific trait variation amongst species, both within and across organs, referred to as 'plant economics spectrum' (PES). Whether and how these coordinated whole-plant economics strategies can influence the decomposition system and thereby impact on ecosystem carbon and nutrient cycling are yet an open question. More specifically, it is yet unknown whether plant functional traits have consistent afterlife effects across different plant organs. 2. To answer those questions, we conducted a common-garden decomposition experiment bringing together leaves, fine stems, coarse stems, fine roots and reproductive parts from a wide range of subarctic plant types, clades and environments. We measured all plant parts for the same (green and litter) plant economics traits and identified a whole-plant axis of carbon and nutrient economics. 3. We demonstrated that our local 'PES' has important afterlife effects on carbon turnover by driving coordinated decomposition rates of different organs across species. All organ decomposabilities were consistently controlled by the same structure-related traits (lignin, C and dry matter content) whilst nutrient-related traits (N, P, pH, phenols) had more variable influence, likely due to their contrasting functions across organs. Nevertheless, consistent shifts in elevation of parallel trait-decomposition relationships between organs indicate that other variables, potentially related to organ dimensions, configuration or chemical contents, codetermine litter decomposition rates. 4. Whilst the coordinated litter decomposabilities across species organs imply a coordinated impact of plant above-ground and below-ground litters on plant–soil feedbacks, the contrasting decomposabilities between plant parts suggest a major role for the relative inputs of organ litter as driver of soil properties and ecosystem biogeochemistry. These relationships, underpinning the afterlife effects of the PES on whole-plant litter decomposability, will provide comprehensive input of vegetation composition feedback to soil carbon turnover.
Journal Article
Forest productivity increases with evenness, species richness and trait variation: a global meta‐analysis
by
Zhang, Yu
,
Reich, Peter B.
,
Chen, Han Y. H.
in
Animal and plant ecology
,
Animal, plant and microbial ecology
,
Applied ecology
2012
1. Although there is ample support for positive species richness–productivity relationships in planted grassland experiments, a recent 48‐site study found no diversity–productivity relationship (DPR) in herbaceous communities. Thus, debate persists about diversity effects in natural versus planted systems. Additionally, current knowledge is weak regarding the influence of evenness on the DPRs, how DPRs are affected by the variation in life‐history traits among constituent species in polycultures and how DPRs differ among biomes. The impacts of these factors on DPRs in forest ecosystems are even more poorly understood. 2. We performed a meta‐analysis of 54 studies to reconcile DPRs in forest ecosystems. We quantified the net diversity effect as log effect size [ln(ES)], the log ratio of the productivity in polycultures to the average of those in monocultures within the same type of mixture, site condition and stand age of each study. The first use of a boosted regression tree model in meta‐analysis, a useful method to partition the effects of multiple predictors rather than relying on vote‐counting of individual studies, unveiled the relative influences of individual predictors. 3. Global average ln(ES) was 0.2128, indicating 23.7% higher productivity in polycultures than monocultures. The final model explained 21% of the variation in ln(ES). The predictors that substantially accounted for the explained variation included evenness (34%), heterogeneity of shade tolerance (29%), richness (13%) and stand age (15%). In contrast, heterogeneity of nitrogen fixation and growth habits, biome and stand origin (naturally established versus planted) contributed negligibly (each ≤ 4%). Log effect size strongly increased with evenness from 0.6 to 1 and with richness from 2 to 6. Furthermore, it was higher with heterogeneity of shade tolerance and generally increased with stand age. 4. Synthesis. Our analysis is, to our knowledge, the first to demonstrate the critical role of species evenness, richness and the importance of contrasting traits in defining net diversity effects in forest polycultures. While testing the specific mechanisms is beyond the scope of our analysis, our results should motivate future studies to link richness, evenness, contrasting traits and life‐history stage to the mechanisms that are expected to produce positive net biodiversity effects such as niche differentiation, facilitation and reduced Janzen–Connell effects.
Journal Article
Biodiversity increases the resistance of ecosystem productivity to climate extremes
by
Bonin, Catherine
,
Ebeling, Anne
,
Weisser, Wolfgang W.
in
631/158/2445
,
631/158/2453
,
631/158/670
2015
Data from experiments that manipulated grassland biodiversity across Europe and North America show that biodiversity increases an ecosystem’s resistance to, although not resilience after, climate extremes.
Biodiversity loss threatens ecosystem reliability
Tests to establish whether biodiversity buffers ecosystems against extreme climate events have produced strongly contrasting results. Forest Isbell
et al
. combine data from 46 experiments that manipulated grassland plant diversity and measured productivity across Europe and North America and find that yes, biodiversity does increase an ecosystem's resistance to climate extremes. Plots with just a few species had their productivity reduced by 50% during climate extremes, whereas this effect was halved with a greater number of species. However, biodiversity had no discernible effect on the ecosystem resilience, with both low and high biodiversity treatments recovering from climate extremes within a year.
It remains unclear whether biodiversity buffers ecosystems against climate extremes, which are becoming increasingly frequent worldwide
1
. Early results suggested that the ecosystem productivity of diverse grassland plant communities was more resistant, changing less during drought, and more resilient, recovering more quickly after drought, than that of depauperate communities
2
. However, subsequent experimental tests produced mixed results
3
,
4
,
5
,
6
,
7
,
8
,
9
,
10
,
11
,
12
,
13
. Here we use data from 46 experiments that manipulated grassland plant diversity to test whether biodiversity provides resistance during and resilience after climate events. We show that biodiversity increased ecosystem resistance for a broad range of climate events, including wet or dry, moderate or extreme, and brief or prolonged events. Across all studies and climate events, the productivity of low-diversity communities with one or two species changed by approximately 50% during climate events, whereas that of high-diversity communities with 16–32 species was more resistant, changing by only approximately 25%. By a year after each climate event, ecosystem productivity had often fully recovered, or overshot, normal levels of productivity in both high- and low-diversity communities, leading to no detectable dependence of ecosystem resilience on biodiversity. Our results suggest that biodiversity mainly stabilizes ecosystem productivity, and productivity-dependent ecosystem services, by increasing resistance to climate events. Anthropogenic environmental changes that drive biodiversity loss thus seem likely to decrease ecosystem stability
14
, and restoration of biodiversity to increase it, mainly by changing the resistance of ecosystem productivity to climate events.
Journal Article
Which is a better predictor of plant traits: temperature or precipitation?
by
Bahn, Michael
,
Hickler, Thomas
,
Liu, Kenwin
in
Animal and plant ecology
,
Animal, plant and microbial ecology
,
Annual plants
2014
QUESTION: Are plant traits more closely correlated with mean annual temperature, or with mean annual precipitation? LOCATION: Global. METHODS: We quantified the strength of the relationships between temperature and precipitation and 21 plant traits from 447,961 species‐site combinations worldwide. We used meta‐analysis to provide an overall answer to our question. RESULTS: Mean annual temperature was significantly more strongly correlated with plant traits than was mean annual precipitation. CONCLUSIONS: Our study provides support for some of the assumptions of classical vegetation theory, and points to many interesting directions for future research. The relatively low R² values for precipitation might reflect the weak link between mean annual precipitation and the availability of water to plants.
Journal Article