Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Series Title
      Series Title
      Clear All
      Series Title
  • Reading Level
      Reading Level
      Clear All
      Reading Level
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Content Type
    • Item Type
    • Is Full-Text Available
    • Subject
    • Country Of Publication
    • Publisher
    • Source
    • Target Audience
    • Donor
    • Language
    • Place of Publication
    • Contributors
    • Location
379,785 result(s) for "Plant ecology"
Sort by:
Plants and ecosystems
\"From tiny mosses to towering conifers, learn all about the different plants growing in forests, deserts, mountaintops, tundra, and everywhere in between.\"--Provided by publisher.
Towards a multidimensional root trait framework: a tree root review
The search for a root economics spectrum (RES) has been sparked by recent interest in trait-based plant ecology. By analogy with the one-dimensional leaf economics spectrum (LES), fine-root traits are hypothesised to match leaf traits which are coordinated along one axis from resource acquisitive to conservative traits. However, our literature review and meta-level analysis reveal no consistent evidence of an RES mirroring an LES. Instead the RES appears to be multidimensional. We discuss three fundamental differences contributing to the discrepancy between these spectra. First, root traits are simultaneously constrained by various environmental drivers not necessarily related to resource uptake. Second, above- and belowground traits cannot be considered analogues, because they function differently and might not be related to resource uptake in a similar manner. Third, mycorrhizal interactions may offset selection for an RES. Understanding and explaining the belowground mechanisms and trade-offs that drive variation in root traits, resource acquisition and plant performance across species, thus requires a fundamentally different approach than applied aboveground. We therefore call for studies that can functionally incorporate the root traits involved in resource uptake, the complex soil environment and the various soil resource uptake mechanisms – particularly the mycorrhizal pathway – in a multidimensional root trait framework.
A plant economics spectrum of litter decomposability
1. Recent evidence indicates tight control of plant resource economics over interspecific trait variation amongst species, both within and across organs, referred to as 'plant economics spectrum' (PES). Whether and how these coordinated whole-plant economics strategies can influence the decomposition system and thereby impact on ecosystem carbon and nutrient cycling are yet an open question. More specifically, it is yet unknown whether plant functional traits have consistent afterlife effects across different plant organs. 2. To answer those questions, we conducted a common-garden decomposition experiment bringing together leaves, fine stems, coarse stems, fine roots and reproductive parts from a wide range of subarctic plant types, clades and environments. We measured all plant parts for the same (green and litter) plant economics traits and identified a whole-plant axis of carbon and nutrient economics. 3. We demonstrated that our local 'PES' has important afterlife effects on carbon turnover by driving coordinated decomposition rates of different organs across species. All organ decomposabilities were consistently controlled by the same structure-related traits (lignin, C and dry matter content) whilst nutrient-related traits (N, P, pH, phenols) had more variable influence, likely due to their contrasting functions across organs. Nevertheless, consistent shifts in elevation of parallel trait-decomposition relationships between organs indicate that other variables, potentially related to organ dimensions, configuration or chemical contents, codetermine litter decomposition rates. 4. Whilst the coordinated litter decomposabilities across species organs imply a coordinated impact of plant above-ground and below-ground litters on plant–soil feedbacks, the contrasting decomposabilities between plant parts suggest a major role for the relative inputs of organ litter as driver of soil properties and ecosystem biogeochemistry. These relationships, underpinning the afterlife effects of the PES on whole-plant litter decomposability, will provide comprehensive input of vegetation composition feedback to soil carbon turnover.
Forest productivity increases with evenness, species richness and trait variation: a global meta‐analysis
1. Although there is ample support for positive species richness–productivity relationships in planted grassland experiments, a recent 48‐site study found no diversity–productivity relationship (DPR) in herbaceous communities. Thus, debate persists about diversity effects in natural versus planted systems. Additionally, current knowledge is weak regarding the influence of evenness on the DPRs, how DPRs are affected by the variation in life‐history traits among constituent species in polycultures and how DPRs differ among biomes. The impacts of these factors on DPRs in forest ecosystems are even more poorly understood. 2. We performed a meta‐analysis of 54 studies to reconcile DPRs in forest ecosystems. We quantified the net diversity effect as log effect size [ln(ES)], the log ratio of the productivity in polycultures to the average of those in monocultures within the same type of mixture, site condition and stand age of each study. The first use of a boosted regression tree model in meta‐analysis, a useful method to partition the effects of multiple predictors rather than relying on vote‐counting of individual studies, unveiled the relative influences of individual predictors. 3. Global average ln(ES) was 0.2128, indicating 23.7% higher productivity in polycultures than monocultures. The final model explained 21% of the variation in ln(ES). The predictors that substantially accounted for the explained variation included evenness (34%), heterogeneity of shade tolerance (29%), richness (13%) and stand age (15%). In contrast, heterogeneity of nitrogen fixation and growth habits, biome and stand origin (naturally established versus planted) contributed negligibly (each ≤ 4%). Log effect size strongly increased with evenness from 0.6 to 1 and with richness from 2 to 6. Furthermore, it was higher with heterogeneity of shade tolerance and generally increased with stand age. 4. Synthesis. Our analysis is, to our knowledge, the first to demonstrate the critical role of species evenness, richness and the importance of contrasting traits in defining net diversity effects in forest polycultures. While testing the specific mechanisms is beyond the scope of our analysis, our results should motivate future studies to link richness, evenness, contrasting traits and life‐history stage to the mechanisms that are expected to produce positive net biodiversity effects such as niche differentiation, facilitation and reduced Janzen–Connell effects.
Biodiversity increases the resistance of ecosystem productivity to climate extremes
Data from experiments that manipulated grassland biodiversity across Europe and North America show that biodiversity increases an ecosystem’s resistance to, although not resilience after, climate extremes. Biodiversity loss threatens ecosystem reliability Tests to establish whether biodiversity buffers ecosystems against extreme climate events have produced strongly contrasting results. Forest Isbell et al . combine data from 46 experiments that manipulated grassland plant diversity and measured productivity across Europe and North America and find that yes, biodiversity does increase an ecosystem's resistance to climate extremes. Plots with just a few species had their productivity reduced by 50% during climate extremes, whereas this effect was halved with a greater number of species. However, biodiversity had no discernible effect on the ecosystem resilience, with both low and high biodiversity treatments recovering from climate extremes within a year. It remains unclear whether biodiversity buffers ecosystems against climate extremes, which are becoming increasingly frequent worldwide 1 . Early results suggested that the ecosystem productivity of diverse grassland plant communities was more resistant, changing less during drought, and more resilient, recovering more quickly after drought, than that of depauperate communities 2 . However, subsequent experimental tests produced mixed results 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 . Here we use data from 46 experiments that manipulated grassland plant diversity to test whether biodiversity provides resistance during and resilience after climate events. We show that biodiversity increased ecosystem resistance for a broad range of climate events, including wet or dry, moderate or extreme, and brief or prolonged events. Across all studies and climate events, the productivity of low-diversity communities with one or two species changed by approximately 50% during climate events, whereas that of high-diversity communities with 16–32 species was more resistant, changing by only approximately 25%. By a year after each climate event, ecosystem productivity had often fully recovered, or overshot, normal levels of productivity in both high- and low-diversity communities, leading to no detectable dependence of ecosystem resilience on biodiversity. Our results suggest that biodiversity mainly stabilizes ecosystem productivity, and productivity-dependent ecosystem services, by increasing resistance to climate events. Anthropogenic environmental changes that drive biodiversity loss thus seem likely to decrease ecosystem stability 14 , and restoration of biodiversity to increase it, mainly by changing the resistance of ecosystem productivity to climate events.
Which is a better predictor of plant traits: temperature or precipitation?
QUESTION: Are plant traits more closely correlated with mean annual temperature, or with mean annual precipitation? LOCATION: Global. METHODS: We quantified the strength of the relationships between temperature and precipitation and 21 plant traits from 447,961 species‐site combinations worldwide. We used meta‐analysis to provide an overall answer to our question. RESULTS: Mean annual temperature was significantly more strongly correlated with plant traits than was mean annual precipitation. CONCLUSIONS: Our study provides support for some of the assumptions of classical vegetation theory, and points to many interesting directions for future research. The relatively low R² values for precipitation might reflect the weak link between mean annual precipitation and the availability of water to plants.