Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
127,267
result(s) for
"Plant population"
Sort by:
Mechanisms of plant–soil feedback
2019
Plant–soil feedback (PSF) occurs when plants alter soil properties that influence the performance of seedlings, with consequent effects on plant populations and communities. Many processes influence PSF, including changes in nutrient availability and the accumulation of natural enemies, mutualists or secondary chemicals. Typically, these mechanisms are investigated in isolation, yet no single mechanism is likely to be completely responsible for PSF as these processes can interact. Further, the outcome depends on which resources are limiting and the other plants and soil biota in the surrounding environment. As such, understanding the mechanisms of PSF and their role within plant communities requires quantification of the interactions among the processes influencing PSF and the associated abiotic and biotic contexts.
Journal Article
Ancient plant DNA in lake sediments
by
Inger Greve Alsos
,
Gentile Francesco Ficetola
,
Keith D. Bennett
in
ancient plant DNA (aDNA)
,
bioinformatics
,
Catchment areas
2017
Recent advances in sequencing technologies now permit the analyses of plant DNA from fossil samples (ancient plant DNA, plant aDNA), and thus enable the molecular reconstruction of palaeofloras.Hitherto, ancient frozen soils have proved excellent in preservingDNAmolecules, and have thus been the most commonly used source of plant aDNA. However, DNA from soil mainly represents taxa growing a fewmetres fromthe sampling point. Lakes have larger catchment areas and recent studies have suggested that plant aDNAfromlake sediments is a more powerful tool for palaeofloristic reconstruction. Furthermore, lakes can be found globally in nearly all environments, and are therefore not limited to perennially frozen areas. Here,we review the latest approaches and methods for the study of plant aDNA from lake sediments and discuss the progressmade up to the present.Weargue that aDNAanalyses add newand additional perspectives for the study of ancient plant populations and, in time, will provide higher taxonomic resolution and more precise estimation of abundance. Despite this, key questions and challenges remain for such plant aDNA studies. Finally, we provide guidelines on technical issues, including lake selection, and we suggest directions for future research on plant aDNA studies in lake sediments.
Journal Article
compadre Plant Matrix Database: an open online repository for plant demography
by
Vaupel, James W
,
Dong, Ming
,
Buhr, Hendrik
in
big data
,
Community ecology
,
comparative approach
2015
Schedules of survival, growth and reproduction are key life‐history traits. Data on how these traits vary among species and populations are fundamental to our understanding of the ecological conditions that have shaped plant evolution. Because these demographic schedules determine population growth or decline, such data help us understand how different biomes shape plant ecology, how plant populations and communities respond to global change and how to develop successful management tools for endangered or invasive species. Matrix population models summarize the life cycle components of survival, growth and reproduction, while explicitly acknowledging heterogeneity among classes of individuals in the population. Matrix models have comparable structures, and their emergent measures of population dynamics, such as population growth rate or mean life expectancy, have direct biological interpretations, facilitating comparisons among populations and species. Thousands of plant matrix population models have been parameterized from empirical data, but they are largely dispersed through peer‐reviewed and grey literature, and thus remain inaccessible for synthetic analysis. Here, we introduce the compadre Plant Matrix Database version 3.0, an open‐source online repository containing 468 studies from 598 species world‐wide (672 species hits, when accounting for species studied in more than one source), with a total of 5621 matrices. compadre also contains relevant ancillary information (e.g. ecoregion, growth form, taxonomy, phylogeny) that facilitates interpretation of the numerous demographic metrics that can be derived from the matrices. Synthesis. Large collections of data allow broad questions to be addressed at the global scale, for example, in genetics (genbank), functional plant ecology (try, bien, d3) and grassland community ecology (nutnet). Here, we present compadre, a similarly data‐rich and ecologically relevant resource for plant demography. Open access to this information, its frequent updates and its integration with other online resources will allow researchers to address timely and important ecological and evolutionary questions.
Journal Article
Impacts of plant invasions in native plant–pollinator networks
by
Arceo-Gómez, Gerardo
,
Parra-Tabla, Vıctor
in
Biodiversity
,
Biodiversity loss
,
Ecological function
2021
The disruption of mutualisms by invasive species has consequences for biodiversity loss and ecosystem function. Although invasive plant effects on the pollination of individual native species has been the subject of much study, their impacts on entire plant–pollinator communities are less understood. Community-level studies on plant invasion have mainly focused on two fronts: understanding the mechanisms that mediate their integration; and their effects on plant–pollinator network structure. Here we briefly review current knowledge and propose a more unified framework for evaluating invasive species integration and their effects on plant–pollinator communities. We further outline gaps in our understanding and propose ways to advance knowledge in this field. Specifically, modeling approaches have so far yielded important predictions regarding the outcome and drivers of invasive species effects on plant communities. However, experimental studies that test these predictions in the field are lacking. We further emphasize the need to understand the link between invasive plant effects on pollination network structure and their consequences for native plant population dynamics (population growth). Integrating demographic studies with those on pollination networks is thus key in order to achieve a more predictive understanding of pollinator-mediated effects of invasive species on the persistence of native plant biodiversity.
Journal Article
Species interactions increase the temporal stability of community productivity in Pinus sylvestris—Fagus sylvatica mixtures across Europe
by
Bravo-Oviedo, Andrés
,
Heym, Michael
,
Madrickiene, Ekaterina
in
Area
,
Asynchrony
,
Biodiversity
2017
1. There is increasing evidence that species diversity enhances the temporal stability (TS) of community productivity in different ecosystems, although its effect at the population and tree levels seems to be negative or neutral. Asynchrony in species responses to environmental conditions was found to be one of the main drivers of this stabilizing process. However, the effect of species mixing on the stability of productivity, and the relative importance of the associated mechanisms, remain poorly understood in forest communities. 2. We investigated the way mixing species influenced the TS of productivity in Pinus sylvestris L. and Fagus sylvatica L. forests, and attempted to determine the main drivers among overyielding, asynchrony between species annual growth responses to environmental conditions, and temporal shifts in species interactions. We used a network of 93 experimental plots distributed across Europe to compare the TS of basal area growth over a 15-year period (1999-2013) in mixed and monospecific forest stands at different organizational levels, namely the community, population and individual tree levels. 3. Mixed stands showed a higher TS of basal area growth than monospecific stands at the community level, but not at the population or individual tree levels. The TS at the community level was related to asynchrony between species growth in mixtures, but not to overyielding nor to asynchrony between species growth in monospecific stands. Temporal shifts in species interactions were also related to asynchrony and to the mixing effect on the TS. 4. Synthesis. Our findings confirm that species mixing can stabilize productivity at the community level, whereas there is a neutral or negative effect on stability at the population and individual tree levels. The contrasting findings regarding the relationships between the temporal stability and asynchrony in species growth in mixed and monospecific stands suggest that the main driver in the stabilizing process may be the temporal niche complementarity between species rather than differences in species' intrinsic responses to environmental conditions.
Journal Article
Disentangling the drivers of context‐dependent plant–animal interactions
by
Lau, Jennifer
,
Angert, Amy L
,
Baer, Kathryn C
in
Abiotic factors
,
Animal and plant ecology
,
Animal, plant and microbial ecology
2014
A fundamental goal of ecology is to predict how strongly one species affects the abundance of another. However, our ability to do so is hindered by the fact that interaction outcomes are notoriously variable in space and time (i.e. context‐dependent) and we lack a predictive understanding of the factors that drive this context‐dependence. Determining whether abiotic factors, in particular, predictably shift the outcome of species interactions is of critical importance for many contemporary problems, from forecasting climate change impacts to predicting the efficacy of weed biocontrol. In this essay, we highlight the context‐dependent nature of interactions between plants and their pollinators and herbivores. We advocate for approaches that will identify whether particular abiotic factors predictably shift how strongly these interactions influence plant abundance and/or population growth. We review long‐standing theory that describes how abiotic context should influence the selective impacts of pollinators and herbivores on plants and articulate why this theory requires modification to predict population‐level effects. Finally, we propose several empirical approaches to address gaps in existing knowledge: (i) experiments across broad abiotic gradients to determine whether the outcome of interactions between pollinators or herbivores and plants varies consistently with changing abiotic conditions; (ii) experiments that manipulate the underlying environmental gradient to elucidate whether the abiotic factor that correlates with interaction outcome is causal; and (iii) seed addition studies to explore how strongly seedling recruitment correlates with seed input (as affected by pollen limitation or herbivory) and to quantify how the strength of the seed‐to‐seedling linkage is influenced by the underlying abiotic gradient. Synthesis. Our understanding of the underlying drivers of context‐dependent plant–animal interactions is currently not well developed. Progress in this area is essential to better predict when and where species interactions will alter the responses of plant populations to environmental changes as well as to develop more robust theory. Experiments aimed at explicitly exploring the role of abiotic factors in mediating the population‐level impact of pollen limitation and herbivory could determine the extent to which variation in the abiotic environment predictably shifts the outcome of these interactions.
Journal Article
Altitude and latitude have different effects on population characteristics of the widespread plant Anthyllis vulneraria
2021
Widespread plants may provide natural models for how population processes change with temperature and other environmental variables and how they may respond to global change. Similar changes in temperature can occur along altitudinal and latitudinal gradients, but hardly any study has compared the effects of the two types of gradients. We studied populations of Anthyllis vulneraria along a latitudinal gradient from Central Europe to the range limit in the North and an altitudinal gradient in the Alps from 500 m to the altitudinal limit at 2500 m, both encompassing a change in annual mean temperature of c. 11.5 °C. Plant size and reproduction decreased, but plant density increased along both gradients, indicating higher recruitment and demographic compensation among vital rates. Our results support the view that demographic compensation may be common in widespread species in contrast to the predictions of the abundant centre model of biogeography. Variation in temperature along the gradients had the strongest effects on most population characteristics, followed by that in precipitation, solar radiation, and soil nutrients. The proportion of plants flowering, seed set and seed mass declined with latitude, while the large variation in these traits along the altitudinal gradient was not related to elevation and covarying environmental variables like annual mean temperature. This suggests that it will be more difficult to draw conclusions about the potential impacts of future climate warming on plant populations in mountains, because of the importance of small-scale variation in environmental conditions.
Journal Article
The impact of elevated temperature and drought on the ecology and evolution of plant–soil microbe interactions
by
Bennett, Alison E.
,
Rasmussen, Pil U.
,
Tack, Ayco J. M.
in
abiotic and biotic factors
,
Adaptation
,
arbuscular mycorrhizal fungi
2020
Climate change is shifting the distribution of species, and may have a profound impact on the ecology and evolution of species interactions. However, we know little about the impact of increasing temperature and changing rainfall patterns on the interactions between plants and their beneficial and antagonistic root symbionts. Here, we used a reciprocal multifactorial growth chamber experiment with seeds and soil microbial communities from three origins to investigate the impact of temperature and soil moisture on the growth, arbuscular mycorrhizal (AM) fungal colonization and root‐associated fungal community of a perennial herb. Moreover, we tested whether plants and AM fungi performed better or worse when plants were grown with their local soil biota, for example, due to plant adaptation or changes in the genetic or species composition of the soil microbial community. Temperature and soil moisture generally increased plant growth, whereas temperature but not soil moisture increased AM fungal colonization. The strength and direction of the plants' response to temperature were dependent on soil moisture and differed among plant populations, and AM fungal colonization was further affected by the origin of the soil microbial community. The root‐associated fungal community structure was impacted by temperature, soil moisture and the soil microbial origin, with interactive effects between the microbial origin and the abiotic environment. Plant biomass was lower when plants were grown with their local soil microbes, potentially due to intraspecific negative plant–soil feedbacks. Synthesis. Our findings indicate that, beyond a relatively uniform increase of plant growth and arbuscular mycorrhizal (AM) fungal colonization with increasing temperature, plants and root‐associated fungi of different origins will vary in their response to climate change (i.e. elevated temperature and shifts in rainfall). This may create pronounced, but difficult to predict, spatial and temporal variation in the ecology and evolution of plant–microbe interactions with a changing climate. Foreign Language (in Swedish) Klimatförändringar påverkar arters utbredningar och kan ha djupgående inverkan på ekologin och evolutionen av arters interaktioner. Vi vet emellertid lite om hur ökande temperaturer och förändrade regnmönster påverkar växelverkan mellan växter och deras fördelaktiga och antagonistiska rotsymbionter. Vi använde här ett multifaktoriellt tillväxtkammarexperiment med frön och samhällen av jordmikrober från tre ursprung för att undersöka påverkan av temperatur och markfuktighet på tillväxten, svampkoloniseringen av arbuskulär mykorrhiza (AM) och det rot‐associerade svampsamhället hos en flerårig ört. Dessutom testade vi om växter och AM‐svampar fungerade bättre eller sämre när växterna odlades med sina lokala jordmikrober, t.ex. på grund av växtens anpassning, genetiska förändringar eller artsammansättningen i jordens mikrobiella samhälle. Temperatur och markfuktighet ökade i allmänhet växttillväxten, medan temperaturen, men inte markfuktigheten, ökade AM‐svampkoloniseringen. Styrkan och riktningen för växternas respons på temperaturen var beroende av markfuktighet och skiljde sig åt bland växtpopulationerna, och AM‐svampkolonisering påverkades även av ursprunget hos jordens mikrobiella samhälle. Den rot‐associerade svampsamhällsstrukturen påverkades av temperatur, markfuktighet och jordens mikrobiella ursprung, med interaktiva effekter mellan det mikrobiella ursprunget och den abiotiska miljön. Växtbiomassan var lägre när växter odlades med sina lokala jordmikrober, potentiellt på grund av intraspecifika negativa återkopplingar mellan växt och mark. Syntes. Studien visar att utöver en ökning av växttillväxt och AM‐svampkolonisering med ökande temperatur, kommer växter och rot‐associerade svampar av olika ursprung att variera som svar på klimatförändringar (dvs förhöjd temperatur och skifte i nederbörd). Ett förändrat klimat kan därför skapa uttalade, men svårförutsägbara, rumsliga och temporära variationer i ekologin och utvecklingen av växt och mikrob‐interaktioner. This study shows that, beyond a relatively uniform increase of plant growth and arbuscular mycorrhizal fungal colonization with increasing temperature, plants and root‐associated fungi of different origins will vary in their response to climate change. This may create pronounced, but difficult to predict, spatial and temporal variation in the ecology and evolution of plant–microbe interactions with a changing climate.
Journal Article
Evolutionary ecology of plant-microbe interactions: soil microbial structure alters selection on plant traits
by
Lau, Jennifer A.
,
Lennon, Jay T.
in
abiotic stress
,
Biological Evolution
,
botanical composition
2011
Below-ground microbial communities influence plant diversity, plant productivity, and plant community composition. Given these strong ecological effects, are interactions with below-ground microbes also important for understanding natural selection on plant traits? Here, we manipulated below-ground microbial communities and the soil moisture environment on replicated populations of Brassica rapa to examine how microbial community structure influences selection on plant traits and mediates plant responses to abiotic environmental stress. In soils with experimentally simplified microbial communities, plants were smaller, had reduced chlorophyll content, produced fewer flowers, and were less fecund when compared with plant populations grown in association with more complex soil microbial communities. Selection on plant growth and phenological traits also was stronger when plants were grown in simplified, less diverse soil microbial communities, and these effects typically were consistent across soil moisture treatments. Our results suggest that microbial community structure affects patterns of natural selection on plant traits. Thus, the below-ground microbial community can influence evolutionary processes, just as recent studies have demonstrated that microbial diversity can influence plant community and ecosystem processes.
Journal Article
ΔTraitSDMs: species distribution models that account for local adaptation and phenotypic plasticity
by
Hampe, Arndt
,
ANR-10-IDEX-0003,IDEX BORDEAUX,Initiative d'excellence de l'Université de Bordeaux
,
Helsingin yliopisto = Helsingfors universitet = University of Helsinki
in
Adaptation
,
Adaptation, Physiological
,
biogeography
2019
Improving our understanding of species ranges under rapid climate change requires application of our knowledge of the tolerance and adaptive capacity of populations to changing environmental conditions. Here, we describe an emerging modelling approach, ΔTraitSDM, which attempts to achieve this by explaining species distribution ranges based on phenotypic plasticity and local adaptation of fitness‐related traits measured across large geographical gradients. The collection of intraspecific trait data measured in common gardens spanning broad environmental clines has promoted the development of these new models – first in trees but now rapidly expanding to other organisms. We review, explain and harmonize the main findings from this new generation of models that, by including trait variation over geographical scales, are able to provide new insights into future species ranges. Overall, ΔTraitSDM predictions generally deliver a less alarming message than previous models of species distribution under new climates, indicating that phenotypic plasticity should help, to a considerable degree, some plant populations to persist under climate change. The development of ΔTraitSDMs offers a new perspective to analyse intraspecific variation in single and multiple traits, with the rationale that trait (co)variation and consequently fitness can significantly change across geographical gradients and new climates.
Journal Article