Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
LanguageLanguage
-
SubjectSubject
-
Item TypeItem Type
-
DisciplineDiscipline
-
YearFrom:-To:
-
More FiltersMore FiltersIs Peer Reviewed
Done
Filters
Reset
2
result(s) for
"Plasmaviridae"
Sort by:
Half a Century of Research on Membrane-Containing Bacteriophages: Bringing New Concepts to Modern Virology
by
Sundberg, Lotta-Riina
,
Poranen, Minna M.
,
Oksanen, Hanna M.
in
Archaeal Viruses - genetics
,
Bacteriophage PRD1 - physiology
,
Bacteriophages - genetics
2019
Half a century of research on membrane-containing phages has had a major impact on virology, providing new insights into virus diversity, evolution and ecological importance. The recent revolutionary technical advances in imaging, sequencing and lipid analysis have significantly boosted the depth and volume of knowledge on these viruses. This has resulted in new concepts of virus assembly, understanding of virion stability and dynamics, and the description of novel processes for viral genome packaging and membrane-driven genome delivery to the host. The detailed analyses of such processes have given novel insights into DNA transport across the protein-rich lipid bilayer and the transformation of spherical membrane structures into tubular nanotubes, resulting in the description of unexpectedly dynamic functions of the membrane structures. Membrane-containing phages have provided a framework for understanding virus evolution. The original observation on membrane-containing bacteriophage PRD1 and human pathogenic adenovirus has been fundamental in delineating the concept of “viral lineages”, postulating that the fold of the major capsid protein can be used as an evolutionary fingerprint to trace long-distance evolutionary relationships that are unrecognizable from the primary sequences. This has brought the early evolutionary paths of certain eukaryotic, bacterial, and archaeal viruses together, and potentially enables the reorganization of the nearly immeasurable virus population (~1 × 1031) on Earth into a reasonably low number of groups representing different architectural principles. In addition, the research on membrane-containing phages can support the development of novel tools and strategies for human therapy and crop protection.
Journal Article
Novel Bacteriophages in Enterococcus spp
by
Mazaheri Nezhad Fard, Ramin
,
Heuzenroeder, Michael W
,
Barton, Mary D
in
Animals
,
Bacteria
,
Bacteriophage
2010
Most of the bacteriophages (phages) currently reported in Enterococcus spp. belong to tailed families of bacteriophages Podoviridae, Siphoviridae, and Myoviridae. There is a little information on non-tailed bacteriophages isolated from enterococci. Samples of sewage and piggery effluents were tested on pig and chicken isolates of Enterococcus faecalis, E. faecium and E. gallinarum for lytic phages. In addition, isolates were exposed to mitomycin C to induce lysogenic phages. Bacteriophages that were detected were visualized by electron microscopy. Ten bacteriophages were of isometric shape with long flexible or non-flexible tails, while one had a long head with a long flexible tail; all contained double-stranded DNA molecules. Seven Polyhedral, filamentous, and pleomorphic-shaped phages containing DNA or RNA were also observed. The pleomorphic phages were droplet- or lemon-shaped in morphology. This study is the first report on polyhedral phages in Enterococcus spp. of animal origin and also the first report of filamentous and pleomorphic phages in enterococci.
Journal Article