Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Reading LevelReading Level
-
Content TypeContent Type
-
YearFrom:-To:
-
More FiltersMore FiltersItem TypeIs Full-Text AvailableSubjectPublisherSourceDonorLanguagePlace of PublicationContributorsLocation
Done
Filters
Reset
9,971
result(s) for
"Plastids."
Sort by:
common red algal origin of the apicomplexan, dinoflagellate, and heterokont plastids
by
Lukeš, Julius
,
Janouškovec, Jan
,
Oborník, Miroslav
in
Algae
,
Apicomplexa - classification
,
Apicomplexa - genetics
2010
The discovery of a nonphotosynthetic plastid in malaria and other apicomplexan parasites has sparked a contentious debate about its evolutionary origin. Molecular data have led to conflicting conclusions supporting either its green algal origin or red algal origin, perhaps in common with the plastid of related dinoflagellates. This distinction is critical to our understanding of apicomplexan evolution and the evolutionary history of endosymbiosis and photosynthesis; however, the two plastids are nearly impossible to compare due to their nonoverlapping information content. Here we describe the complete plastid genome sequences and plastid-associated data from two independent photosynthetic lineages represented by Chromera velia and an undescribed alga CCMP3155 that we show are closely related to apicomplexans. These plastids contain a suite of features retained in either apicomplexan (four plastid membranes, the ribosomal superoperon, conserved gene order) or dinoflagellate plastids (form II Rubisco acquired by horizontal transfer, transcript polyuridylylation, thylakoids stacked in triplets) and encode a full collective complement of their reduced gene sets. Together with whole plastid genome phylogenies, these characteristics provide multiple lines of evidence that the extant plastids of apicomplexans and dinoflagellates were inherited by linear descent from a common red algal endosymbiont. Our phylogenetic analyses also support their close relationship to plastids of heterokont algae, indicating they all derive from the same endosymbiosis. Altogether, these findings support a relatively simple path of linear descent for the evolution of photosynthesis in a large proportion of algae and emphasize plastid loss in several lineages (e.g., ciliates, Cryptosporidium, and Phytophthora).
Journal Article
Plastid phylogenomic analysis of green plants
by
Ruhfel, Brad R.
,
Soltis, Pamela S.
,
Wong, Gane K.-S.
in
Amborella
,
Amino Acid Sequence
,
Amino Acids
2018
Premise of the Study For the past one billion years, green plants (Viridiplantae) have dominated global ecosystems, yet many key branches in their evolutionary history remain poorly resolved. Using the largest analysis of Viridiplantae based on plastid genome sequences to date, we examined the phylogeny and implications for morphological evolution at key nodes. Methods We analyzed amino acid sequences from protein‐coding genes from complete (or nearly complete) plastomes for 1879 taxa, including representatives across all major clades of Viridiplantae. Much of the data used was derived from transcriptomes from the One Thousand Plants Project (1KP); other data were taken from GenBank. Key Results Our results largely agree with previous plastid‐based analyses. Noteworthy results include (1) the position of Zygnematophyceae as sister to land plants (Embryophyta), (2) a bryophyte clade (hornworts, mosses + liverworts), (3) Equisetum + Psilotaceae as sister to Marattiales + leptosporangiate ferns, (4) cycads + Ginkgo as sister to the remaining extant gymnosperms, within which Gnetophyta are placed within conifers as sister to non‐Pinaceae (Gne‐Cup hypothesis), and (5) Amborella, followed by water lilies (Nymphaeales), as successive sisters to all other extant angiosperms. Within angiosperms, there is support for Mesangiospermae, a clade that comprises magnoliids, Chloranthales, monocots, Ceratophyllum, and eudicots. The placements of Ceratophyllum and Dilleniaceae remain problematic. Within Pentapetalae, two major clades (superasterids and superrosids) are recovered. Conclusions This plastid data set provides an important resource for elucidating morphological evolution, dating divergence times in Viridiplantae, comparisons with emerging nuclear phylogenies, and analyses of molecular evolutionary patterns and dynamics of the plastid genome.
Journal Article
Entire plastid phylogeny of the carrot genus (Daucus, Apiaceae)
2017
PREMISE OF THE STUDY: We explored the phylogenetic utility of entire plastid DNA sequences in Daucus and compared the results with prior phylogenetic results using plastid and nuclear DNA sequences. METHODS: We used Illumina sequencing to obtain full plastid sequences of 37 accessions of 20 Daucus taxa and outgroups, analyzed the data with phylogenetic methods, and examined evidence for mitochondrial DNA transfer to the plastid (DcMP). KEY RESULTS: Our phylogenetic trees of the entire data set were highly resolved, with 100% bootstrap support for most of the external and many of the internal clades, except for the clade of D. carota and its most closely related species D. syrticus. Subsets of the data, including regions traditionally used as phylogenetically informative regions, provide various degrees of soft congruence with the entire data set. There are areas of hard incongruence, however, with phylogenies using nuclear data. We extended knowledge of a mitochondrial to plastid DNA insertion sequence previously named DcMP and identified the first instance in flowering plants of a sequence of potential nuclear genome origin inserted into the plastid genome. There is a relationship of inverted repeat junction classes and repeat DNA to phylogeny, but no such relationship with nonsynonymous mutations. CONCLUSIONS: Our data have allowed us to (1) produce a well‐resolved plastid phylogeny of Daucus, (2) evaluate subsets of the entire plastid data for phylogeny, (3) examine evidence for plastid and nuclear DNA phylogenetic incongruence, and (4) examine mitochondrial and nuclear DNA insertion into the plastid.
Journal Article
Factors mediating plastid dependency and the origins of parasitism in apicomplexans and their close relatives
by
Kolísko, Martin
,
Mylnikov, Alexander P.
,
Howe, Alexis T.
in
ancestry
,
Animals
,
Apicomplexa - genetics
2015
Apicomplexans are a major lineage of parasites, including causative agents of malaria and toxoplasmosis. How such highly adapted parasites evolved from free-living ancestors is poorly understood, particularly because they contain nonphotosynthetic plastids with which they have a complex metabolic dependency. Here, we examine the origin of apicomplexan parasitism by resolving the evolutionary distribution of several key characteristics in their closest free-living relatives, photosynthetic chromerids and predatory colpodellids. Using environmental sequence data, we describe the diversity of these apicomplexan-related lineages and select five species that represent this diversity for transcriptome sequencing. Phylogenomic analysis recovered a monophyletic lineage of chromerids and colpodellids as the sister group to apicomplexans, and a complex distribution of retention versus loss for photosynthesis, plastid genomes, and plastid organelles. Reconstructing the evolution of all plastid and cytosolic metabolic pathways related to apicomplexan plastid function revealed an ancient dependency on plastid isoprenoid biosynthesis, predating the divergence of apicomplexan and dinoflagellates. Similarly, plastid genome retention is strongly linked to the retention of two genes in the plastid genome,sufBandclpC, altogether suggesting a relatively simple model for plastid retention and loss. Lastly, we examine the broader distribution of a suite of molecular characteristics previously linked to the origins of apicomplexan parasitism and find that virtually all are present in their free-living relatives. The emergence of parasitism may not be driven by acquisition of novel components, but rather by loss and modification of the existing, conserved traits.
Journal Article
A molecular timescale for eukaryote evolution with implications for the origin of red algal-derived plastids
by
Strassert, Jürgen F. H.
,
Irisarri, Iker
,
Burki, Fabien
in
631/181/735
,
631/181/757
,
631/326/2565/547
2021
In modern oceans, eukaryotic phytoplankton is dominated by lineages with red algal-derived plastids such as diatoms, dinoflagellates, and coccolithophores. Despite the ecological importance of these groups and many others representing a huge diversity of forms and lifestyles, we still lack a comprehensive understanding of their evolution and how they obtained their plastids. New hypotheses have emerged to explain the acquisition of red algal-derived plastids by serial endosymbiosis, but the chronology of these putative independent plastid acquisitions remains untested. Here, we establish a timeframe for the origin of red algal-derived plastids under scenarios of serial endosymbiosis, using Bayesian molecular clock analyses applied on a phylogenomic dataset with broad sampling of eukaryote diversity. We find that the hypotheses of serial endosymbiosis are chronologically possible, as the stem lineages of all red plastid-containing groups overlap in time. This period in the Meso- and Neoproterozoic Eras set the stage for the later expansion to dominance of red algal-derived primary production in the contemporary oceans, which profoundly altered the global geochemical and ecological conditions of the Earth.
There are several competing hypotheses for the acquisition of red algal-derived plastids by eukaryotic phytoplankton. Here, the authors use Bayesian molecular clock analyses to evaluate the chronological possibility of the proposed plastid origins and transmissions.
Journal Article
Dinoflagellates with relic endosymbiont nuclei as models for elucidating organellogenesis
by
Takahashi, Kazuya
,
Matsuo, Eriko
,
Inagaki, Yuji
in
Algae
,
Aquatic plants
,
Biological Sciences
2020
Nucleomorphs are relic endosymbiont nuclei so far found only in two algal groups, cryptophytes and chlorarachniophytes, which have been studied to model the evolutionary process of integrating an endosymbiont alga into a host-governed plastid (organellogenesis). However, past studies suggest that DNA transfer from the endosymbiont to host nuclei had already ceased in both cryptophytes and chlorarachniophytes, implying that the organellogenesis at the genetic level has been completed in the two systems. Moreover, we have yet to pinpoint the closest free-living relative of the endosymbiotic alga engulfed by the ancestral chlorarachniophyte or cryptophyte, making it difficult to infer how organellogenesis altered the endosymbiont genome. To counter the above issues, we need novel nucleomorph-bearing algae, in which endosymbiont-to-host DNA transfer is on-going and for which endosymbiont/plastid origins can be inferred at a fine taxonomic scale. Here, we report two previously undescribed dinoflagellates, strains MGD and TGD, with green algal endosymbionts enclosing plastids as well as relic nuclei (nucleomorphs). We provide evidence for the presence of DNA in the two nucleomorphs and the transfer of endosymbiont genes to the host (dinoflagellate) genomes. Furthermore, DNA transfer between the host and endosymbiont nuclei was found to be in progress in both the MGD and TGD systems. Phylogenetic analyses successfully resolved the origins of the endosymbionts at the genus level. With the combined evidence, we conclude that the host–endosymbiont integration in MGD/TGD is less advanced than that in cryptophytes/chrorarachniophytes, and propose the two dinoflagellates as models for elucidating organellogenesis.
Journal Article
The evolution of the plastid chromosome in land plants: gene content, gene order, gene function
by
Quandt, Dietmar
,
Müller, Kai F.
,
Wicke, Susann
in
Biochemistry
,
Biomedical and Life Sciences
,
Chromosomes
2011
This review bridges functional and evolutionary aspects of plastid chromosome architecture in land plants and their putative ancestors. We provide an overview on the structure and composition of the plastid genome of land plants as well as the functions of its genes in an explicit phylogenetic and evolutionary context. We will discuss the architecture of land plant plastid chromosomes, including gene content and synteny across land plants. Moreover, we will explore the functions and roles of plastid encoded genes in metabolism and their evolutionary importance regarding gene retention and conservation. We suggest that the slow mode at which the plastome typically evolves is likely to be influenced by a combination of different molecular mechanisms. These include the organization of plastid genes in operons, the usually uniparental mode of plastid inheritance, the activity of highly effective repair mechanisms as well as the rarity of plastid fusion. Nevertheless, structurally rearranged plastomes can be found in several unrelated lineages (e.g. ferns, Pinaceae, multiple angiosperm families). Rearrangements and gene losses seem to correlate with an unusual mode of plastid transmission, abundance of repeats, or a heterotrophic lifestyle (parasites or myco-heterotrophs). While only a few functional gene gains and more frequent gene losses have been inferred for land plants, the plastid
Ndh
complex is one example of multiple independent gene losses and will be discussed in detail. Patterns of
ndh
-gene loss and functional analyses indicate that these losses are usually found in plant groups with a certain degree of heterotrophy, might rendering plastid encoded
Ndh
1 subunits dispensable.
Journal Article
Embryophyte stress signaling evolved in the algal progenitors of land plants
by
Curtis, Bruce A.
,
Archibald, John M.
,
de Vries, Jan
in
Abscisic acid
,
Algae
,
Biological Evolution
2018
Streptophytes are unique among photosynthetic eukaryotes in having conquered land. As the ancestors of land plants, streptophyte algae are hypothesized to have possessed exaptations to the environmental stressors encountered during the transition to terrestrial life. Many of these stressors, including high irradiance and drought, are linked to plastid biology. We have investigated global gene expression patterns across all six major streptophyte algal lineages, analyzing a total of around 46,000 genes assembled from a little more than 1.64 billion sequence reads from six organisms under three growth conditions. Our results show that streptophyte algae respond to cold and high light stress via expression of hallmark genes used by land plants (embryophytes) during stress–response signaling and downstream responses. Among the strongest differentially regulated genes were those associated with plastid biology. We observed that among streptophyte algae, those most closely related to land plants, especially Zygnema, invest the largest fraction of their transcriptional budget in plastid-targeted proteins and possess an array of land plant-type plastid-nucleus communication genes. Streptophyte algae more closely related to land plants also appear most similar to land plants in their capacity to respond to plastid stressors. Support for this notion comes from the detection of a canonical abscisic acid receptor of the PYRABACTIN RESISTANCE (PYR/PYL/RCAR) family in Zygnema, the first found outside the land plant lineage. We conclude that a fine-tuned response toward terrestrial plastid stressors was among the exaptations that allowed streptophytes to colonize the terrestrial habitat on a global scale.
Journal Article
Sorting of mitochondrial and plastid heteroplasmy in Arabidopsis is extremely rapid and depends on MSH1 activity
by
Johnston, Iain G.
,
Gyorfy, Matheus Fernandes
,
Keene, Alexandra
in
Arabidopsis
,
Arabidopsis - genetics
,
Arabidopsis Proteins - metabolism
2022
The fate of new mitochondrial and plastid mutations depends on their ability to persist and spread among the numerous organellar genome copies within a cell (heteroplasmy). The extent to which heteroplasmies are transmitted across generations or eliminated through genetic bottlenecks is not well understood in plants, in part because their low mutation rates make these variants so infrequent. Disruption of MutS Homolog 1 (MSH1), a gene involved in plant organellar DNA repair, results in numerous de novo point mutations, which we used to quantitatively track the inheritance of single nucleotide variants in mitochondrial and plastid genomes in Arabidopsis. We found that heteroplasmic sorting (the fixation or loss of a variant) was rapid for both organelles, greatly exceeding rates observed in animals. In msh1 mutants, plastid variants sorted faster than those in mitochondria and were typically fixed or lost within a single generation. Effective transmission bottleneck sizes (N) for plastids and mitochondria were N ∼ 1 and 4, respectively. Restoring MSH1 function further increased the rate of heteroplasmic sorting in mitochondria (N ∼ 1.3), potentially because of its hypothesized role in promoting gene conversion as a mechanism of DNA repair, which is expected to homogenize genome copies within a cell. Heteroplasmic sorting also favored GC base pairs. Therefore, recombinational repair and gene conversion in plant organellar genomes can potentially accelerate the elimination of heteroplasmies and bias the outcome of this sorting process.
Journal Article