Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
481
result(s) for
"Pleckstrin"
Sort by:
Chlorogenic Acid Targeting of the AKT PH Domain Activates AKT/GSK3β/FOXO1 Signaling and Improves Glucose Metabolism
by
Zhao, Xuezhi
,
Hao, Erwei
,
Hou, Xiaotao
in
bioactive compounds
,
Blood Glucose - metabolism
,
chlorogenic acid
2018
Chlorogenic acid (CGA), a bioactive component in the human diet, is reported to exert beneficial effects on the regulation of glucose metabolism. This study was designed to investigate the specific target of CGA, and explore its underlying mechanisms. Beneficial effects of CGA in glucose metabolism were confirmed in insulin-treated human hepatocarcinoma HepG2 cells. Protein fishing, via CGA-modified functionalized magnetic microspheres, demonstrated the binding of CGA with protein kinase B (AKT). Immunofluorescence using a CGA molecular probe further demonstrated the co-localization of CGA with AKT. A competitive combination test and hampering of AKT membrane translocation showed that CGA might bind to the pleckstrin homology (PH) domain of AKT. The specific binding did not lead to the membrane translocation to phosphatidylinositol (3,4,5)-trisphosphate (PIP3), but directly activated the phosphorylation of AKT on Ser-473, induced the phosphorylation of the downstream molecules, glycogen synthase kinase 3β (GSK3β) and forkhead box O1 (FOXO1), and improved glucose metabolism. Collectively, our data demonstrate that CGA exerts regulatory effects on glucose metabolism via direct targeting the PH domain of AKT. This study clarifies the mechanism of the potential benefits of nutrients containing CGA in the complementary therapy of glucose metabolism disorders.
Journal Article
Lessons in self-defence: inhibition of virus entry by intrinsic immunity
2022
Virus entry, consisting of attachment to and penetration into the host target cell, is the first step of the virus life cycle and is a critical ‘do or die’ event that governs virus emergence in host populations. Most antiviral vaccines induce neutralizing antibodies that prevent virus entry into cells. However, while the prevention of virus invasion by humoral immunity is well appreciated, considerably less is known about the immune defences present within cells (known as intrinsic immunity) that interfere with virus entry. The interferon-induced transmembrane (IFITM) proteins, known for inhibiting fusion between viral and cellular membranes, were once the only factors known to restrict virus entry. However, the progressive development of genetic and pharmacological screening platforms and the onset of the COVID-19 pandemic have galvanized interest in how viruses infiltrate cells and how cells defend against it. Several host factors with antiviral potential are now implicated in the regulation of virus entry, including cholesterol 25-hydroxylase (CH25H), lymphocyte antigen 6E (LY6E), nuclear receptor co-activator protein 7 (NCOA7), interferon-γ-inducible lysosomal thiol reductase (GILT), CD74 and ARFGAP with dual pleckstrin homology domain-containing protein 2 (ADAP2). This Review summarizes what is known and what remains to be understood about the intrinsic factors that form the first line of defence against virus infection.Besides neutralizing antibodies, viruses face a range of cell-intrinsic inhibitors that are specialized to limit virus entry into host cells. Majdoul and Compton describe the mechanisms of action of the cellular factors providing this important first line of defence against virus infection, including infection by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2).
Journal Article
An active allosteric mechanism in ASAP1-mediated Arf1 GTP hydrolysis redefines PH domain function
2025
GTPase-activating proteins are important regulators of small GTPases; among these, ASAP1 stimulates GTP hydrolysis on Arf1 and is implicated in cancer progression. ASAP1 contains a Pleckstrin Homology (PH) domain essential for maximum Arf·GTP hydrolysis. The prevailing view of PH domains is that they regulate proteins through passive mechanisms like membrane recruitment. In sharp contrast, we show that the PH domain of ASAP1 actively contributes to Arf1 GTP hydrolysis. By combining NMR, molecular dynamics simulations, kinetic assays, and mutational analysis, we find that the PH domain binds Arf·GTP at the membrane, to establish an active state primed for GTP hydrolysis. We identify key residues on the PH domain and Arf that drive this allosteric mechanism, which mathematical modeling shows contributes as much to GTPase activation as membrane recruitment. The finding that PH domains directly modulate small GTPases has broad implications for the Ras and Rho oncoprotein families.
GTPase-activating proteins (GAPs) often contain regulatory PH domains. In this work, Soubias et al, using an integrated structure-function approach, discovered a mechanism where a GAP PH domain binds directly to a GTPase to induce allosteric changes facilitating GTP hydrolysis.
Journal Article
PLEKHA4 knockdown induces apoptosis in melanoma cells through the MAPK and β‑catenin signaling pathways
2025
Malignant melanoma (MM) is a highly aggressive subtype of skin cancer characterized by a poor prognosis, particularly in the advanced stages. Despite advancements in targeted therapy and immunotherapy, the survival rates for MM remain low, underscoring the need for new therapeutic targets. Pleckstrin homology domain-containing family A member 4 (PLEKHA4), which has regulatory functions in pivotal cellular processes, has emerged as a potential target in melanoma. The present study aimed to investigate the role of PLEKHA4 in melanoma progression, focusing on its influence on the MAPK and Wnt/β-catenin signaling pathways. Bioinformatics analysis revealed that PLEKHA4 was upregulated in melanoma tissues, whereas PLEKHA4 knockdown in melanoma cell lines (A375 and A2058) significantly inhibited cell proliferation and migration, enhanced apoptosis and inhibited tumor growth in vivo. Mechanistic studies demonstrated that PLEKHA4 may exert its effects by modulating the MAPK signaling pathway through interactions with key proteins, including ERK, JNK and MEK. Additionally, PLEKHA4 was shown to impact apoptosis by regulating caspase-3, COX2 and p65. Additionally, β-catenin nuclear translocation was affected via the Wnt pathway. Moreover, PLEKHA4 knockdown reduced cMyc ubiquitination, consequently promoting its degradation. The present findings suggested that PLEKHA4 could promote melanoma cell proliferation by regulating both the MAPK and Wnt/β-catenin pathways, thereby proposing PLEKHA4 as a promising therapeutic target for MM. Further studies are warranted to elucidate the mechanisms underlying PLEKHA4-mediated modulation of cMyc ubiquitination.
Journal Article
Evidence for the Involvement of Pleckstrin Homology Domain-Containing Proteins in the Transport of Enterocin DD14 (EntDD14); a Leaderless Two-Peptide Bacteriocin
by
Pérez-Ramos, Adrián
,
BioEcoAgro - UMR transfrontalière INRAe - UMRT1158 ; Université d'Artois (UA)-Université de Liège = University of Liège = Universiteit van Luik = Universität Lüttich (ULiège)-Université de Picardie Jules Verne (UPJV)-Université du Littoral Côte d'Opale (ULCO)-Université de Lille-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-JUNIA (JUNIA) ; Université catholique de Lille (UCL)-Université catholique de Lille (UCL)
,
Benachour, Abdellah
in
ABC transporters
,
Amino acids
,
Bacteria
2021
Bacteriocins synthesis is initiated from an inactive precursor, which is composed of an N-terminal leader peptide attached to a C-terminal pro-peptide. However, leaderless bacteriocins (LLB) do not possess this N-terminal leader peptide nor undergo post-translational modifications. These atypical bacteriocins are observed to be immediately active after their translation in the cytoplasm. However, although considered to be simple, the biosynthetic pathway of LLB remains to be fully understood. Enterocin DD14 (EntDD14) is a two-peptide LLB produced by Enterococcus faecalis 14, which is a strain isolated from meconium. In silico analysis of DNA encoding EntDD14 located a cluster of 10 genes ddABCDEFGHIJ, where ddE and ddF encode the peculiar DdE and DdF proteins, carrying pleckstrin homology (PH) domains. These modules are quite common in Eucarya proteins and are known to be involved in intracellular signaling or cytoskeleton organization. To elucidate their role within the EntDD14 genetic determinants, we constructed deletion mutants of the ddE and ddF genes. As a result, the mutants were unable to export EntDD14 outside of the cytoplasm even though there was a clear expression of structural genes ddAB encoding EntDD14, and genes ddHIJ encoding an ABC transporter. Importantly, in these mutant strains (ΔddE and ΔddF), EntDD14 was detected by mass spectrometry in the intracellular soluble fraction exerting, upon its accumulation, a toxic effect on the producing strain as revealed by cell-counting and confocal microscopy analysis. Taken together, these results clearly indicate that PH domain-containing proteins, such as DdE and DdF, are involved in the transport of the leaderless two-peptide EntDD14.
Journal Article
Structural and functional dissection of the DH and PH domains of oncogenic Bcr-Abl tyrosine kinase
2017
The two isoforms of the Bcr-Abl tyrosine kinase, p210 and p190, are associated with different leukemias and have a dramatically different signaling network, despite similar kinase activity. To provide a molecular rationale for these observations, we study the Dbl-homology (DH) and Pleckstrin-homology (PH) domains of Bcr-Abl p210, which constitute the only structural differences to p190. Here we report high-resolution structures of the DH and PH domains and characterize conformations of the DH–PH unit in solution. Our structural and functional analyses show no evidence that the DH domain acts as a guanine nucleotide exchange factor, whereas the PH domain binds to various phosphatidylinositol-phosphates. PH-domain mutants alter subcellular localization and result in decreased interactions with p210-selective interaction partners. Hence, the PH domain, but not the DH domain, plays an important role in the formation of the differential p210 and p190 Bcr-Abl signaling networks.
The Bcr-Abl tyrosine kinases p210 and p190 are linked to different leukemias and differ by the Dbl homology (DH) and Pleckstrin-homology (PH) domains. Here the authors characterize structures of the Bcr-Abl p210 DH and PH domains and find that the PH domain is important for the cellular localization and signaling network of p210.
Journal Article
ORP5 and ORP8 bind phosphatidylinositol-4, 5-biphosphate (PtdIns(4,5)P 2) and regulate its level at the plasma membrane
by
Wang, Huan
,
Du, Ximing
,
Wu, Jia-Wei
in
Binding
,
Biological Transport
,
Cell Membrane - metabolism
2017
ORP5 and ORP8, members of the oxysterol-binding protein (OSBP)-related proteins (ORP) family, are endoplasmic reticulum membrane proteins implicated in lipid trafficking. ORP5 and ORP8 are reported to localize to endoplasmic reticulum–plasma membrane junctions via binding to phosphatidylinositol-4-phosphate (PtdIns(4) P ), and act as a PtdIns(4) P /phosphatidylserine counter exchanger between the endoplasmic reticulum and plasma membrane. Here we provide evidence that the pleckstrin homology domain of ORP5/8 via PtdIns(4,5) P 2 , and not PtdIns(4) P binding mediates the recruitment of ORP5/8 to endoplasmic reticulum–plasma membrane contact sites. The OSBP-related domain of ORP8 can extract and transport multiple phosphoinositides in vitro, and knocking down both ORP5 and ORP8 in cells increases the plasma membrane level of PtdIns(4,5) P 2 with little effect on PtdIns(4) P . Overall, our data show, for the first time, that phosphoinositides other than PtdIns(4) P can also serve as co-exchangers for the transport of cargo lipids by ORPs.
Journal Article
Pleckstrin homology and RhoGEF domain containing G4 (PLEKHG4) leads to the activation of RhoGTPases promoting the malignant phenotypes of thyroid cancer
2023
Thyroid cancer (TC) is one of the most common endocrine system cancers, and its incidence is elevating. There is an urgent need to develop a deeper understanding of TC pathogenesis and explore new therapeutic target for its treatment. This study aimed to investigate the effects of pleckstrin homology and RhoGEF domain containing G4 (PLEKHG4) on the progression of TC. Herein, 29 pairs of TC and adjacent tissues were used to assess the expression of PLEKHG4. A xenograft model of mouse was established by subcutaneously injected with TC cells. Lung metastasis model was established through left ventricular injection. The results revealed that PLEKHG4 was up-regulated in human TC tissues. PLEKHG4 level was correlated with clinicopathological parameters of TC patients. In vitro assays revealed that PLEKHG4 promoted TC cell proliferation, migration, invasion, and epithelial-mesenchymal transformation. Knockdown of PLEKHG4 led to the opposite effects, and the loss of PLEKHG4 enhanced the apoptosis ability and inhibited the stemness properties of TC cells. These findings were further confirmed by the in vivo growth and lung metastasis of TC tumor. Mechanistically, PLEKHG4 promoted the activation of RhoGTPases RhoA, Cdc42, and Rac1. The inhibitors of these RhoGTPases reversed the PLEKHG4-induced malignant phenotypes. Additionally, ubiquitin-conjugating enzyme E2O (UBE2O), a large E2 ubiquitin-conjugating enzyme acted as an ubiquitin enzyme of PLEKHG4, facilitated its ubiquitination and degradation. In conclusion, PLEKHG4, regulated by UBE2O, promoted the thyroid cancer progression via activating the RhoGTPases pathway. UBE2O/PLEKHG4/RhoGTPases axis is expected to be a novel a therapeutic target for TC treatment.
Journal Article
Pleckstrin homology-like domain, family A, member 1 (PHLDA1) and cancer
2016
Pleckstrin homology-like domain, family A, member 1 (PHLDA1) encodes a member of an evolutionarily conserved pleckstrin homology-related domain protein family. It was first identified as a potential transcription factor required for Fas expression and activation-induced apoptosis in mouse T cell hybridomas. The exact molecular and biological functions of PHLDA1 remain to be elucidated. However, its expression is induced by a variety of external stimuli and there is evidence that it may function as a transcriptional activator that acts as a mediator of apoptosis, proliferation, differentiation and cell migration dependent on the cellular type and context. Recently, PHLDA1 has received attention due to its association with cancer. In the present review, the current knowledge of PHLDA1 protein structure, expression regulation and function is summarized. In addition, the current data in the literature is reviewed with regards to the role of PHLDA1 in cancer pathogenesis.
Journal Article
The STX17-SNAP47-VAMP7/VAMP8 complex is the default SNARE complex mediating autophagosome–lysosome fusion
2024
Autophagosome–lysosome fusion mediated by SNARE complexes is an essential step in autophagy. Two SNAP29-containing SNARE complexes have been extensively studied in starvation-induced bulk autophagy, while the relevant SNARE complexes in other types of autophagy occurring under non-starvation conditions have been overlooked. Here, we found that autophagosome–lysosome fusion in selective autophagy under non-starvation conditions does not require SNAP29-containing SNARE complexes, but requires the STX17-SNAP47-VAMP7/VAMP8 SNARE complex. Further, the STX17-SNAP47-VAMP7/VAMP8 SNARE complex also functions in starvation-induced autophagy. SNAP47 is recruited to autophagosomes following concurrent detection of ATG8s and PI(4,5)P
2
via its Pleckstrin homology domain. By contrast, SNAP29-containing SNAREs are excluded from selective autophagy due to inactivation by O-GlcNAcylation under non-starvation conditions. These findings depict a previously unknown, default SNARE complex responsible for autophagosome–lysosome fusion in both selective and bulk autophagy, which could guide research and therapeutic development in autophagy-related diseases.
Journal Article