Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
134 result(s) for "Pluronic F127"
Sort by:
Three-Dimensional Printing of a Hybrid Bioceramic and Biopolymer Porous Scaffold for Promoting Bone Regeneration Potential
In this study, we proposed a three-dimensional (3D) printed porous (termed as 3DPP) scaffold composed of bioceramic (beta-tricalcium phosphate (β-TCP)) and thermoreversible biopolymer (pluronic F-127 (PF127)) that may provide bone tissue ingrowth and loading support for bone defect treatment. The investigated scaffolds were printed in three different ranges of pore sizes for comparison (3DPP-1: 150–200 μm, 3DPP-2: 250–300 μm, and 3DPP-3: 300–350 μm). The material properties and biocompatibility of the 3DPP scaffolds were characterized using scanning electron microscopy, X-ray diffractometry, contact angle goniometry, compression testing, and cell viability assay. In addition, micro-computed tomography was applied to investigate bone regeneration behavior of the 3DPP scaffolds in the mini-pig model. Analytical results showed that the 3DPP scaffolds exhibited well-defined porosity, excellent microstructural interconnectivity, and acceptable wettability (θ < 90°). Among all groups, the 3DPP-1 possessed a significantly highest compressive force 273 ± 20.8 Kgf (* p < 0.05). In vitro experiment results also revealed good cell viability and cell attachment behavior in all 3DPP scaffolds. Furthermore, the 3DPP-3 scaffold showed a significantly higher percentage of bone formation volume than the 3DPP-1 scaffold at week 8 (* p < 0.05) and week 12 (* p < 0.05). Hence, the 3DPP scaffold composed of β-TCP and F-127 is a promising candidate to promote bone tissue ingrowth into the porous scaffold with decent biocompatibility. This scaffold particularly fabricated with a pore size of around 350 μm (i.e., 3DPP-3 scaffold) can provide proper loading support and promote bone regeneration in bone defects when applied in dental and orthopedic fields.
Incorporation of Lamotrigine Drug in the PEO–PPO–PEO Triblock Copolymer (Pluronic F127) Micelles: Effect of Hydrophilic Polymers
The hydrophobic drug Lamotrigine (LTG) shows low bioavailability after oral administration. Work has been performed to improve the aqueous solubility of LTG using the micelles of amphiphilic block copolymers. Polyethylene oxide- polypropylene oxide- polyethylene oxide triblock copolymers (PEO–PPO–PEO), known as Pluronic ® , have been the subject of current interest due to the versatile structural possibilities of varying PEO/PPO ratios. Incorporation of LTG in the aqueous micellar solutions of Pluronic ® F127 was investigated using UV–visible spectroscopy. The shapes and size of the micelles with and without LTG have been ascertained using dynamic light scattering and small angle neutron scattering experiments. Results show increase in the Pluronic ® micellar size with hard sphere radius with the incorporation of LTG. The effect of hydrophilic polymers (PEG1500 and F68) on the LTG-incorporated Pluronic ® F127 micelles was also studied and found inefficient for enhancement of the solubility of LTG. Solid forms of LTG-incorporated Pluronic ® F127 micelles with and without hydrophilic polymers, coded as LPMs, were successfully prepared through the thin-film hydration method. Fourier transform infrared spectroscopy, X-ray diffraction spectroscopy and thermogravimetric analysis have been used to ensure the compatibility of the LTG with Pluronic ® F127 micelles in prepared LPMs. All the LPMs showed good incorporation efficiency, loading capacity and the sustained release profile of LTG. Results showed no specific improvement with the addition of hydrophilic polymers in the studied concentration range.
Progress in Pluronic F127 Derivatives for Application in Wound Healing and Repair
Pluronic F127 hydrogel biomaterial has garnered considerable attention in wound healing and repair due to its remarkable properties including temperature sensitivity, injectability, biodegradability, and maintain a moist wound environment. This comprehensive review provides an in-depth exploration of the recent advancements in Pluronic F127-derived hydrogels, such as F127-CHO, F127-NH , and F127-DA, focusing on their applications in the treatment of various types of wounds, ranging from burns and acute wounds to infected wounds, diabetic wounds, cutaneous tumor wounds, and uterine scars. Furthermore, the review meticulously examines the intricate interaction mechanisms employed by these hydrogels within the wound microenvironment. By elucidating the underlying mechanisms, discussing the strengths and weaknesses of Pluronic F127, analyzing the current state of wound healing development, and expanding on the trend of targeting mitochondria and cells with F127 as a nanomaterial. The review enhances our understanding of the therapeutic effects of these hydrogels aims to foster the development of effective and safe wound-healing modalities. The valuable insights provided this review have the potential to inspire novel ideas for clinical treatment and facilitate the advancement of innovative wound management approaches.
Formulation and in vivo assessment of terconazole-loaded polymeric mixed micelles enriched with Cremophor EL as dual functioning mediator for augmenting physical stability and skin delivery
The aim of the current study was to formulate terconazole (TCZ) loaded polymeric mixed micelles (PMMs) incorporating Cremophor EL as a stabilizer and a penetration enhancer. A 2 3 full factorial design was performed using Design-Expert® software for the optimization of the PMMs which were formulated using Pluronic P123 and Pluronic F127 together with Cremophor EL. To confirm the role of Cremophor EL, PMMs formulation lacking Cremophor EL was prepared for the purpose of comparison. Results showed that the optimal PMMs formulation (F7, where the ratio of total Pluronics to drug was 40:1, the weight ratio of Pluronic P123 to Pluronic F127 was 4:1, and the percentage of Cremophor EL in aqueous phase was 5%) had a high micellar incorporation efficiency (92.98 ± 0.40%) and a very small micellar size (33.23 ± 8.00 nm). Transmission electron microscopy revealed that PMMs possess spherical shape and good dispersibility. The optimal PMMs exhibited superior physical stability when compared with the PMMs formulation of the same composition but lacking Cremophor EL. Ex vivo studies demonstrated that the optimal PMMs formula markedly improved the dermal TCZ delivery compared to PMMs lacking Cremophor EL and TCZ suspension. In addition, it was found that the optimal PMMs exhibited a greater extent of TCZ deposition in the rat dorsal skin relative to TCZ suspension. Moreover, histopathological studies revealed the safety of the optimal PMMs upon topical application to rats. Consequently, PMMs enriched with Cremophor EL, as a stable nano-system, could be promising for the skin delivery of TCZ.
Assessing Mucoadhesion in Polymer Gels: The Effect of Method Type and Instrument Variables
The process of mucoadhesion has been widely studied using a wide variety of methods, which are influenced by instrumental variables and experiment design, making the comparison between the results of different studies difficult. The aim of this work was to standardize the conditions of the detachment test and the rheological methods of mucoadhesion assessment for semisolids, and introduce a texture profile analysis (TPA) method. A factorial design was developed to suggest standard conditions for performing the detachment force method. To evaluate the method, binary polymeric systems were prepared containing poloxamer 407 and Carbopol 971P®, Carbopol 974P®, or Noveon® Polycarbophil. The mucoadhesion of systems was evaluated, and the reproducibility of these measurements investigated. This detachment force method was demonstrated to be reproduceable, and gave different adhesion when mucin disk or ex vivo oral mucosa was used. The factorial design demonstrated that all evaluated parameters had an effect on measurements of mucoadhesive force, but the same was not observed for the work of adhesion. It was suggested that the work of adhesion is a more appropriate metric for evaluating mucoadhesion. Oscillatory rheology was more capable of investigating adhesive interactions than flow rheology. TPA method was demonstrated to be reproducible and can evaluate the adhesiveness interaction parameter. This investigation demonstrates the need for standardized methods to evaluate mucoadhesion and makes suggestions for a standard study design.
Fabrication and Preliminary In Vitro Evaluation of 3D-Printed Alginate Films with Cannabidiol (CBD) and Cannabigerol (CBG) Nanoparticles for Potential Wound-Healing Applications
In this study, drug carrier nanoparticles comprised of Pluronic-F127 and cannabidiol (CBD) or cannabigerol (CBG) were developed, and their wound healing action was studied. They were further incorporated in 3D printed films based on sodium alginate. The prepared films were characterized morphologically and physicochemically and used to evaluate the drug release profiles of the nanoparticles. Additional studies on their water loss rate, water retention capacity, and 3D-printing shape fidelity were performed. Nanoparticles were characterized physicochemically and for their drug loading performance. They were further assessed for their cytotoxicity (MTT Assay) and wound healing action (Cell Scratch Assay). The in vitro wound-healing study showed that the nanoparticles successfully enhanced wound healing in the first 6 h of application, but in the following 6 h they had an adverse effect. MTT assay studies revealed that in the first 24 h, a concentration of 0.1 mg/mL nanoparticles resulted in satisfactory cell viability, whereas CBG nanoparticles were safe even at 48 h. However, in higher concentrations and after a threshold of 24 h, the cell viability was significantly decreased. The results also presented mono-disperse nano-sized particles with diameters smaller than 200 nm with excellent release profiles and enhanced thermal stability. Their entrapment efficiency and drug loading properties were higher than 97%. The release profiles of the active pharmaceutical ingredients from the films revealed a complete release within 24 h. The fabricated 3D-printed films hold promise for wound healing applications; however, more studies are needed to further elucidate their mechanism of action.
Temperature Induced Gelation and Antimicrobial Properties of Pluronic F127 Based Systems
Different formulations containing Pluronic F127 and polysaccharides (chitosan, sodium alginate, gellan gum, and κ-carrageenan) were investigated as potential injectable gels that behave as free-flowing liquid with reduced viscosity at low temperatures and displayed solid-like properties at 37 °C. In addition, ZnO nanoparticles, lysozyme, or curcumin were added for testing the antimicrobial properties of the thermal-sensitive gels. Rheological investigations evidenced small changes in transition temperature and kinetics of gelation at 37 °C in presence of polysaccharides. However, the gel formation is very delayed in the presence of curcumin. The antimicrobial properties of Pluronic F127 gels are very modest even by adding chitosan, lysozyme, or ZnO nanoparticles. A remarkable enhancement of antimicrobial activity was observed in the presence of curcumin. Chitosan addition to Pluronic/curcumin systems improves their viscoelasticity, antimicrobial activity, and stability in time. The balance between viscoelastic and antimicrobial characteristics needs to be considered in the formulation of Pluronic F127 gels suitable for biomedical and pharmaceutical applications.
Biocompatible and Antibacterial Nitric Oxide-Releasing Pluronic F-127/Chitosan Hydrogel for Topical Applications
Nitric oxide (NO) is involved in physiological processes, including vasodilatation, wound healing and antibacterial activities. As NO is a free radical, designing drugs to generate therapeutic amounts of NO in controlled spatial and time manners is still a challenge. In this study, the NO donor S-nitrosoglutathione (GSNO) was incorporated into the thermoresponsive Pluronic F-127 (PL)-chitosan (CS) hydrogel, with an easy and economically feasible methodology. CS is a polysaccharide with known antimicrobial properties. Scanning electron microscopy, rheology and differential scanning calorimetry techniques were used for hydrogel characterization. The results demonstrated that the hydrogel has a smooth surface, thermoresponsive behavior and good mechanical stability. The kinetics of NO release and GSNO diffusion from GSNO-containing PL/CS hydrogel demonstrated a sustained NO/GSNO release, in concentrations suitable for biomedical applications. The GSNO-PL/CS hydrogel demonstrated a concentration-dependent toxicity to Vero cells, and antimicrobial activity to Pseudomonas aeruginosa (minimum inhibitory concentration and minimum bactericidal concentration values of 0.5 µg·mL−1 of hydrogel, which corresponds to 1 mmol·L−1 of GSNO). Interestingly, the concentration range in which the NO-releasing hydrogel demonstrated an antibacterial effect was not found to be toxic to the Vero mammalian cell. Thus, the GSNO-PL/CS hydrogel is a suitable biomaterial for topical NO delivery applications.
Mixed Pluronic—Cremophor Polymeric Micelles as Nanocarriers for Poorly Soluble Antibiotics—The Influence on the Antibacterial Activity
In this work, novel polymeric mixed micelles from Pluronic F127 and Cremophor EL were investigated as drug delivery systems for Norfloxacin as model antibiotic drug. The optimal molar ratio of surfactants was determined, in order to decrease critical micellar concentration (CMC) and prepare carriers with minimal surfactant concentrations. The particle size, zeta potential, and encapsulation efficiency were determined for both pure and mixed micelles with selected composition. In vitro release kinetics of Norfloxacin from micelles show that the composition of surfactant mixture generates tunable extended release. The mixed micelles exhibit good biocompatibility against normal fibroblasts MRC-5 cells, while some cytotoxicity was found in all micellar systems at high concentrations. The influence of the surfactant components in the carrier on the antibacterial properties of Norfloxacin was investigated. The drug loaded mixed micellar formulation exhibit good activity against clinical isolated strains, compared with the CLSI recommended standard strains (Staphylococcus aureus ATCC 25923, Enterococcus faecalis ATCC 29213, Pseudomonas aeruginosa ATCC 27853, Escherichia coli ATCC 25922). P. aeruginosa 5399 clinical strain shows low sensitivity to Norfloxacin in all tested micelle systems. The results suggest that Cremophor EL-Pluronic F127 mixed micelles can be considered as novel controlled release delivery systems for hydrophobic antimicrobial drugs.