Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
LanguageLanguage
-
SubjectSubject
-
Item TypeItem Type
-
DisciplineDiscipline
-
YearFrom:-To:
-
More FiltersMore FiltersIs Peer Reviewed
Done
Filters
Reset
327
result(s) for
"Pneumococcal Infections - virology"
Sort by:
Synergistic stimulation of type I interferons during influenza virus coinfection promotes Streptococcus pneumoniae colonization in mice
by
Weiser, Jeffrey N.
,
Nakamura, Shigeki
,
Davis, Kimberly M.
in
Animals
,
Bacteria
,
Biomedical research
2011
Pneumococcal infection of the respiratory tract is often secondary to recent influenza virus infection and accounts for much of the morbidity and mortality during seasonal and pandemic influenza. Here, we show that coinfection of the upper respiratory tract of mice with influenza virus and pneumococcus leads to synergistic stimulation of type I IFNs and that this impairs the recruitment of macrophages, which are required for pneumococcal clearance, due to decreased production of the chemokine CCL2. Type I IFN expression was induced by pneumococcal colonization alone. Colonization followed by influenza coinfection led to a synergistic type I IFN response, resulting in increased density of colonizing bacteria and susceptibility to invasive infection. This enhanced type I IFN response inhibited production of the chemokine CCL2, which promotes the recruitment of macrophages and bacterial clearance. Stimulation of CCL2 by macrophages upon pneumococcal infection alone required the pattern recognition receptor Nod2 and expression of the pore-forming toxin pneumolysin. Indeed, the increased colonization associated with concurrent influenza virus infection was not observed in mice lacking Nod2 or the type I IFN receptor, or in mice challenged with pneumococci lacking pneumolysin. We therefore propose that the synergistic stimulation of type I IFN production during concurrent influenza virus and pneumococcal infection leads to increased bacterial colonization and suggest that this may contribute to the higher rates of disease associated with coinfection in humans.
Journal Article
Increased Risk for and Mortality From Invasive Pneumococcal Disease in HIV-Exposed but Uninfected Infants Aged <1 Year in South Africa, 2009–2013
by
Tempia, Stefano
,
Finlayson, Heather
,
Reubenson, Gary
in
ARTICLES AND COMMENTARIES
,
Cross-Sectional Studies
,
Epidemiology
2015
Background. High antenatal human immunodeficiency virus (HIV) seroprevalence rates (∼30%) with low perinatal HIV transmission rates (2.5%), due to HIV prevention of mother-to-child transmission program improvements in South Africa, has resulted in increasing numbers of HIV-exposed but uninfected (HEU) children. We aimed to describe the epidemiology of invasive pneumococcal disease (IPD) in HEU infants. Methods. We conducted a cross-sectional study of infants aged <1 year with IPD enrolled in a national, laboratory-based surveillance program for incidence estimations. Incidence was reported for 2 time points, 2009 and 2013. At enhanced sites we collected additional data including HIV status and in-hospital outcome. Results. We identified 2099 IPD cases in infants from 2009 to 2013 from all sites. In infants from enhanced sites (n = 1015), 92% had known HIV exposure status and 86% had known outcomes. IPD incidence was highest in HIV-infected infants, ranging from 272 to 654 per 100 000 population between time points (2013 and 2009), followed by HEU (33–88 per 100 000) and HIV-unexposed and uninfected (HUU) infants (18–28 per 100 000). The case-fatality rate in HEU infants (29% [74/253]) was intermediate between HUU (25% [94/377]) and HIV-infected infants (34% [81/242]). When restricted to infants <6 months of age, HEU infants (37% [59/175]) were at significantly higher risk of dying than HUU infants (32% [51/228]; adjusted relative risk ratio, 1.76 [95% confidence interval, 1.09–2.85]). Discussion. HEU infants are at increased risk of IPD and mortality from IPD compared with HUU children, especially as young infants. HEU infants, whose numbers will likely continue to increase, should be prioritized for interventions such as pneumococcal vaccination along with HIV-infected infants and children.
Journal Article
Influenza Enhances Susceptibility to Natural Acquisition of and Disease due to Streptococcus pneumoniae in Ferrets
2010
The role of respiratory viruses in the transmission of Streptococcus pneumoniae is poorly understood. Key questions, such as which serotypes are most fit for transmission and disease and whether influenza virus alters these parameters in a serotype-specific manner, have not been adequately studied. In a novel model of transmission in ferrets, we demonstrated that pneumococcal transmission and disease were enhanced if donors had previously been infected with influenza virus. Bacterial titers in nasal wash, the incidence of mucosal and invasive disease, and the percentage of contacts that were infected all increased. In contact ferrets, viral infection increased their susceptibility to S. pneumoniae acquisition both in terms of the percentage infected and the distance over which they could acquire infection. These influenza-mediated effects on colonization, transmission, and disease were dependent on the pneumococcal strain. Overall, these data argue that the relationship between respiratory viral infections, acquisition of pneumococci, and development of disease in humans needs further study to be better understood.
Journal Article
Alteration of Flt3-Ligand-dependent de novo generation of conventional dendritic cells during influenza infection contributes to respiratory bacterial superinfection
by
Fontaine, Josette
,
Barthélémy, Adeline
,
Sencio, Valentin
in
Animals
,
Bacteria
,
Bacterial diseases
2018
Secondary bacterial infections contribute to the excess morbidity and mortality of influenza A virus (IAV) infection. Disruption of lung integrity and impaired antibacterial immunity during IAV infection participate in colonization and dissemination of the bacteria out of the lungs. One key feature of IAV infection is the profound alteration of lung myeloid cells, characterized by the recruitment of deleterious inflammatory monocytes. We herein report that IAV infection causes a transient decrease of lung conventional dendritic cells (cDCs) (both cDC1 and cDC2) peaking at day 7 post-infection. While triggering emergency monopoiesis, IAV transiently altered the differentiation of cDCs in the bone marrow, the cDC1-biaised pre-DCs being particularly affected. The impaired cDC differentiation during IAV infection was independent of type I interferons (IFNs), IFN-γ, TNFα and IL-6 and was not due to an intrinsic dysfunction of cDC precursors. The alteration of cDC differentiation was associated with a drop of local and systemic production of Fms-like tyrosine kinase 3 ligand (Flt3-L), a critical cDC differentiation factor. Overexpression of Flt3-L during IAV infection boosted the cDC progenitors' production in the BM, replenished cDCs in the lungs, decreased inflammatory monocytes' infiltration and lowered lung damages. This was associated with partial protection against secondary pneumococcal infection, as reflected by reduced bacterial dissemination and prolonged survival. These findings highlight the impact of distal viral infection on cDC genesis in the BM and suggest that Flt3-L may have potential applications in the control of secondary infections.
Journal Article
Selective pressure: Rise of the nonencapsulated pneumococcus
by
McDaniel, Larry S.
,
Bradshaw, Jessica L.
in
Anti-Bacterial Agents - administration & dosage
,
Antibiotic resistance
,
Antibiotics
2019
Notably, nearly all conjunctivitis cases are associated with NESp, and NESp strains are isolated from 10% to 15% of OM infections [8]. Because NESp surface proteins are not masked by a capsule, these strains have more intimate interactions with the host cell that permits greater adherence necessary for colonization, which enhances the subsequent risk of developing OM, pneumonia, and bacteremia. Furthermore, large reductions in vaccine serotypes alter the host niche to favor outgrowth of nonvaccine strains. [...]vaccine-induced pressures on pneumococcal populations have caused a shift in strains associated with disease rather than eradicating pneumococcal disease. [...]NESp have high genetic plasticity and serve as antibiotic resistance reservoirs, with 80% to 96% of isolated NESp carrying resistance to multiple antibiotics, including erythromycin, clindamycin, tetracycline, sulfamethoxazole-trimethoprim, and penicillin [8]. Yet there is a long road ahead in production and implementation of protein-based pneumococcal vaccines. [...]these alternative vaccines are introduced, mucosal and NESp-associated infections will continue to rise and cause severe morbidity and financial burden.
Journal Article
Influenza Virus Infection Decreases Tracheal Mucociliary Velocity and Clearance of Streptococcus pneumoniae
by
Pittet, Lynnelle A.
,
Rutkowski, Melanie R.
,
Harmsen, Allen G.
in
Animals
,
Bacterial Adhesion
,
Basement Membrane - metabolism
2010
Influenza virus infections increase susceptibility to secondary bacterial infections, such as pneumococcal pneumonia, resulting in increased morbidity and mortality. Influenza-induced tissue damage is hypothesized to increase susceptibility to Streptococcus pneumoniae infection by increasing adherence to the respiratory epithelium. Using a mouse model of influenza infection followed by S. pneumoniae infection, we found that an influenza infection does not increase the number of pneumococci initially present within the trachea, but does inhibit pneumococcal clearance by 2 hours after infection. To determine whether influenza damage increases pneumococcal adherence, we developed a novel murine tracheal explant system to determine influenza-induced tissue damage and subsequent pneumococcal adherence. Murine tracheas were kept viable ex vivo as shown by microscopic examination of ciliary beating and cellular morphology using continuous media flow for up to 8 days. Tracheas were infected with influenza virus for 0.5-5 days ex vivo, and influenza-induced tissue damage and the early stages of repair to the epithelium were assessed histologically. A prior influenza infection did not increase pneumococcal adherence, even when the basement membrane was maximally denuded or during the repopulation of the basement membrane with undifferentiated epithelial cells. We measured mucociliary clearance in vivo and found it was decreased in influenza-infected mice. Together, our results indicate that exposure of the tracheal basement membrane contributes minimally to pneumococcal adherence. Instead, an influenza infection results in decreased tracheal mucociliary velocity and initial clearance of pneumococci, leading to an increased pneumococcal burden as early as 2 hours after pneumococcal infection.
Journal Article
Streptococcus pneumoniae Coinfection Is Correlated with the Severity of H1N1 Pandemic Influenza
2009
Initial reports in May 2009 of the novel influenza strain H1N1pdm estimated a case fatality rate (CFR) of 0.6%, similar to that of seasonal influenza. In July 2009, however, Argentina reported 3056 cases with 137 deaths, representing a CFR of 4.5%. Potential explanations for increased CFR included virus reassortment or genetic drift, or infection of a more vulnerable population. Virus genomic sequencing of 26 Argentinian samples representing both severe and mild disease indicated no evidence of reassortment, mutations associated with resistance to antiviral drugs, or genetic drift that might contribute to virulence. Furthermore, no evidence was found for increased frequency of risk factors for H1N1pdm disease.
We examined nasopharyngeal swab samples (NPS) from 199 cases of H1N1pdm infection from Argentina with MassTag PCR, testing for 33 additional microbial agents. The study population consisted of 199 H1N1pdm-infected subjects sampled between 23 June and 4 July 2009. Thirty-nine had severe disease defined as death (n = 20) or hospitalization (n = 19); 160 had mild disease. At least one additional agent of potential pathogenic importance was identified in 152 samples (76%), including Streptococcus pneumoniae (n = 62); Haemophilus influenzae (n = 104); human respiratory syncytial virus A (n = 11) and B (n = 1); human rhinovirus A (n = 1) and B (n = 4); human coronaviruses 229E (n = 1) and OC43 (n = 2); Klebsiella pneumoniae (n = 2); Acinetobacter baumannii (n = 2); Serratia marcescens (n = 1); and Staphylococcus aureus (n = 35) and methicillin-resistant S. aureus (MRSA, n = 6). The presence of S. pneumoniae was strongly correlated with severe disease. S. pneumoniae was present in 56.4% of severe cases versus 25% of mild cases; more than one-third of H1N1pdm NPS with S. pneumoniae were from subjects with severe disease (22 of 62 S. pneumoniae-positive NPS, p = 0.0004). In subjects 6 to 55 years of age, the adjusted odds ratio (OR) of severe disease in the presence of S. pneumoniae was 125.5 (95% confidence interval [CI], 16.95, 928.72; p<0.0001).
The association of S. pneumoniae with morbidity and mortality is established in the current and previous influenza pandemics. However, this study is the first to demonstrate the prognostic significance of non-invasive antemortem diagnosis of S. pneumoniae infection and may provide insights into clinical management.
Journal Article
Density, Serotype Diversity, and Fitness of Streptococcus pneumoniae in Upper Respiratory Tract Cocolonization With Nontypeable Haemophilus influenzae
by
Lewnard, Joseph A.
,
Dagan, Ron
,
Pettigrew, Melinda M.
in
BACTERIA
,
Carrier State - immunology
,
Carrier State - microbiology
2016
Background. Coinfections by Streptococcus pneumoniae and nontypeable Haemophilus influenzae (NTHi) are frequently implicated in complex otitis media. Whereas upper respiratory tract carriage precedes disease for both pathogens, interactions between species in cocolonized hosts are poorly understood. We compared colonization densities and the diversity and fitness of pneumococcal serotypes in single-species and mixed-species colonization. Methods. We analyzed nasopharyngeal pneumococcal carriage and nasopharyngeal and oropharyngeal NTHi carriage in 13 541 samples collected over 6909 study visits from 769 children 2-30 months old in a 7-valent pneumococcal conjugate vaccine dosing trial. We measured density associations between the species and compared pneumococcal serotype diversity during and in the absence of NTHi colonization. We used logistic regression to quantify associations between NTHi colonization and previously published pneumococcal serotype factors related to fitness. Results. Densities of the 2 species were positively associated when they occur in the nasopharynx. NTHi colonization was associated with reduced pneumococcal serotype diversity among children 2-18 months old and was more prevalent among children carrying pneumococcal serotypes with greater capsular thickness, neutrophil resistance, and metabolic efficiency. Conclusions. Pneumococcal-NTHi cocolonization is associated with an elevated density of both species and with reduced diversity and increased fitness of pneumococcal serotypes. NTHi colonization may create a selective environment favoring pneumococci with immune-evasive phenotypes.
Journal Article
The global distribution and diversity of protein vaccine candidate antigens in the highly virulent Streptococcus pnuemoniae serotype 1
2017
Serotype 1 is one of the most common causes of pneumococcal disease worldwide. Pneumococcal protein vaccines are currently being developed as an alternate intervention strategy to pneumococcal conjugate vaccines. Pre-requisites for an efficacious pneumococcal protein vaccine are universal presence and minimal variation of the target antigen in the pneumococcal population, and the capability to induce a robust human immune response. We used in silico analysis to assess the prevalence of seven protein vaccine candidates (CbpA, PcpA, PhtD, PspA, SP0148, SP1912, SP2108) among 445 serotype 1 pneumococci from 26 different countries, across four continents. CbpA (76%), PspA (68%), PhtD (28%), PcpA (11%) were not universally encoded in the study population, and would not provide full coverage against serotype 1. PcpA was widely present in the European (82%), but not in the African (2%) population. A multi-valent vaccine incorporating CbpA, PcpA, PhtD and PspA was predicted to provide coverage against 86% of the global population. SP0148, SP1912 and SP2108 were universally encoded and we further assessed their predicted amino acid, antigenic and structural variation. Multiple allelic variants of these proteins were identified, different allelic variants dominated in different continents; the observed variation was predicted to impact the antigenicity and structure of two SP0148 variants, one SP1912 variant and four SP2108 variants, however these variants were each only present in a small fraction of the global population (<2%). The vast majority of the observed variation was predicted to have no impact on the efficaciousness of a protein vaccine incorporating a single variant of SP0148, SP1912 and/or SP2108 from S. pneumoniae TIGR4. Our findings emphasise the importance of taking geographic differences into account when designing global vaccine interventions and support the continued development of SP0148, SP1912 and SP2108 as protein vaccine candidates against this important pneumococcal serotype.
Journal Article
A Perfect Storm: Increased Colonization and Failure of Vaccination Leads to Severe Secondary Bacterial Infection in Influenza Virus-Infected Obese Mice
by
Meliopoulos, Victoria A.
,
Rosch, Jason
,
McCullers, Jon
in
Animals
,
Bacteria
,
Bacterial infections
2017
Obesity is a risk factor for developing severe disease following influenza virus infection; however, the comorbidity of obesity and secondary bacterial infection, a serious complication of influenza virus infections, is unknown. To fill this gap in knowledge, lean and obese C57BL/6 mice were infected with a nonlethal dose of influenza virus followed by a nonlethal dose of Streptococcus pneumoniae . Strikingly, not only did significantly enhanced death occur in obese coinfected mice compared to lean controls, but also high mortality was seen irrespective of influenza virus strain, bacterial strain, or timing of coinfection. This result was unexpected, given that most influenza virus strains, especially seasonal human A and B viruses, are nonlethal in this model. Both viral and bacterial titers were increased in the upper respiratory tract and lungs of obese animals as early as days 1 and 2 post-bacterial infection, leading to a significant decrease in lung function. This increased bacterial load correlated with extensive cellular damage and upregulation of platelet-activating factor receptor, a host receptor central to pneumococcal invasion. Importantly, while vaccination of obese mice against either influenza virus or pneumococcus failed to confer protection, antibiotic treatment was able to resolve secondary bacterial infection-associated mortality. Overall, secondary bacterial pneumonia could be a widespread, unaddressed public health problem in an increasingly obese population. IMPORTANCE Worldwide obesity rates have continued to increase. Obesity is associated with increased severity of influenza virus infection; however, very little is known about respiratory coinfections in this expanding, high-risk population. Our studies utilized a coinfection model to show that obesity increases mortality from secondary bacterial infection following influenza virus challenge through a “perfect storm” of host factors that lead to excessive viral and bacterial outgrowth. In addition, we found that vaccination of obese mice against either virus or bacteria failed to confer protection against coinfection, but antibiotic treatment did alleviate mortality. Combined, these results represent an understudied and imminent public health concern in a weighty portion of the global population. Worldwide obesity rates have continued to increase. Obesity is associated with increased severity of influenza virus infection; however, very little is known about respiratory coinfections in this expanding, high-risk population. Our studies utilized a coinfection model to show that obesity increases mortality from secondary bacterial infection following influenza virus challenge through a “perfect storm” of host factors that lead to excessive viral and bacterial outgrowth. In addition, we found that vaccination of obese mice against either virus or bacteria failed to confer protection against coinfection, but antibiotic treatment did alleviate mortality. Combined, these results represent an understudied and imminent public health concern in a weighty portion of the global population.
Journal Article